Justice-Centered Ambitious Science Teaching Framework
Framework to organize foothold practices for centering justice in science education.
Framework to organize foothold practices for centering justice in science education.
Framework to organize foothold practices for centering justice in science education.
Framework to organize foothold practices for centering justice in science education.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
This section presents an overview of critical developments in technology-driven, classroom-based innovative assessment practices. It uses a framework organized around cognitive constructs, assessment functionality, and automaticity to review the technological developments of innovative assessments and identify how they have been advanced to meet researcher and practitioner needs.
We examined secondary (6-12) mathematics teachers’ participation in a professional development (PD) model where they collectively investigated video cases of students engaging with ambitious instructional materials. We leveraged frame analysis, frame processes, and the Teaching for Robust Understanding framework to characterize the learning of professional learning communities. We found that teacher learning was supported within collegial environments where teachers respectfully challenged or transformed ideas on how to solve problems of practice.
We examined secondary (6-12) mathematics teachers’ participation in a professional development (PD) model where they collectively investigated video cases of students engaging with ambitious instructional materials. We leveraged frame analysis, frame processes, and the Teaching for Robust Understanding framework to characterize the learning of professional learning communities.
In this report section, we discuss the importance of aligning classroom assessments with learning goals and instructional practices to both shape and evaluate students’ learning opportunities. We describe a plausible solution for improving alignment by integrating theories of learning in the design of classroom assessments. We discuss ways in which the specification of theories of learning as learning progressions can improve alignment between classroom assessments and instruction by focusing on the content, task design, and data generated from classroom assessments.
In this report section, we discuss the importance of aligning classroom assessments with learning goals and instructional practices to both shape and evaluate students’ learning opportunities.
Justice-centred science pedagogy has been suggested as an effective framework for supporting teachers in bringing in culturally relevant pedagogy to their science classrooms; however, limited instructional tools exist that introduce social dimensions of science in ways teachers feel confident navigating.
Justice-centred science pedagogy has been suggested as an effective framework for supporting teachers in bringing in culturally relevant pedagogy to their science classrooms; however, limited instructional tools exist that introduce social dimensions of science in ways teachers feel confident navigating. In this article, we add to the justice-centred science pedagogy framework by offering tools to make sense of science and social factors and introduce socioscientific modelling as an instructional strategy for attending to social dimensions of science in ways that align with justice-centred science pedagogy.
Research on socio-scientific issues (SSI) has revealed that it is critical for learners to develop a systematic understanding of the underlying issue. In this paper, we explore how modeling can facilitate students’ systems thinking in the context of SSI. Building on evidence from prior research in promoting systems thinking skills through modeling in scientific contexts, we hypothesize that a similar modeling approach could effectively foster students’ systematic understanding of complex societal issues.
Research on socio-scientific issues (SSI) has revealed that it is critical for learners to develop a systematic understanding of the underlying issue. In this paper, we explore how modeling can facilitate students’ systems thinking in the context of SSI. Building on evidence from prior research in promoting systems thinking skills through modeling in scientific contexts, we hypothesize that a similar modeling approach could effectively foster students’ systematic understanding of complex societal issues.
Teachers tend to be lifelong learners, motivated to pursue professional learning that is meaningful to their particular needs. In 2013, Marrongelle et. al., noted “it is incumbent on the field to capitalize on emerging technologies in the design and delivery of effective professional development.” (p. 208). While the past decade has seen an increase in development of opportunities for personalized learning for mathematics teachers online (e.g., Silverman & Hoyos, 2018), more work is needed to provide additional research-based opportunities.
The InSTEP professional learning platform aims to support grades 6-12 teachers’ professional learning in teaching statistics and data science through a personalized online learning platform. While statistics and data analysis are included in standards for both mathematics and science, there are also many states across the country envisioning high school course pathways that include a heavier emphasis on statistics and even stand alone courses on data science. In this brief research report, we aim to share how we have designed supports for teachers to personalize their professional learning and results from a collective case study of 37 participants engaged in a field test of the platform in Fall 2022.