Biology

‘Me Hizo Sentir Como Científica’: The Expressed Science Identities of Multilingual Learners in High School Biology Classrooms

To make sound science-related decisions in a global society, individuals must possess a science identity, or see themselves as capable of doing and understanding science. Science identity development begins in school-aged years, when multilingual students (MLs) are often marginalised in the classroom due to language challenges and low expectations placed on them. This descriptive multiple case study explores the science identities expressed by six US high school MLs in their biology classrooms. Data from semi structured interviews were analysed through qualitative coding methods.

Author/Presenter

Molly M. Staggs

Julie C. Brown

Lead Organization(s)
Year
2023
Short Description

Science identity development begins in school-aged years, when multilingual students (MLs) are often marginalised in the classroom due to language challenges and low expectations placed on them. This descriptive multiple case study explores the science identities expressed by six US high school MLs in their biology classrooms.

Integrative Analysis Using Big Ideas: Energy Transfer and Cellular Respiration

Big ideas in science education are meant to be interpretive frameworks that empower student learning. Unfortunately, outside of the broad conception of scientific evaluation, there are few theoretical explanations of how this might happen. Therefore, we contribute one such explanation, an instructional concept called integrative analysis wherein students use a big idea to interconnect isolated scenarios and enrich their meanings. We illustrate the characteristics and value of integrative analysis within an empirical study of student learning in 9th-grade biology.

Author/Presenter

Jonathan T. Shemwell

Daniel K. Capps

Ayca K. Fackler

Carlson H. Coogler

Year
2023
Short Description

Big ideas in science education are meant to be interpretive frameworks that empower student learning. Unfortunately, outside of the broad conception of scientific evaluation, there are few theoretical explanations of how this might happen. Therefore, we contribute one such explanation, an instructional concept called integrative analysis wherein students use a big idea to interconnect isolated scenarios and enrich their meanings.

Integrative Analysis Using Big Ideas: Energy Transfer and Cellular Respiration

Big ideas in science education are meant to be interpretive frameworks that empower student learning. Unfortunately, outside of the broad conception of scientific evaluation, there are few theoretical explanations of how this might happen. Therefore, we contribute one such explanation, an instructional concept called integrative analysis wherein students use a big idea to interconnect isolated scenarios and enrich their meanings. We illustrate the characteristics and value of integrative analysis within an empirical study of student learning in 9th-grade biology.

Author/Presenter

Jonathan T. Shemwell

Daniel K. Capps

Ayca K. Fackler

Carlson H. Coogler

Year
2023
Short Description

Big ideas in science education are meant to be interpretive frameworks that empower student learning. Unfortunately, outside of the broad conception of scientific evaluation, there are few theoretical explanations of how this might happen. Therefore, we contribute one such explanation, an instructional concept called integrative analysis wherein students use a big idea to interconnect isolated scenarios and enrich their meanings.

Integrative Analysis Using Big Ideas: Energy Transfer and Cellular Respiration

Big ideas in science education are meant to be interpretive frameworks that empower student learning. Unfortunately, outside of the broad conception of scientific evaluation, there are few theoretical explanations of how this might happen. Therefore, we contribute one such explanation, an instructional concept called integrative analysis wherein students use a big idea to interconnect isolated scenarios and enrich their meanings. We illustrate the characteristics and value of integrative analysis within an empirical study of student learning in 9th-grade biology.

Author/Presenter

Jonathan T. Shemwell

Daniel K. Capps

Ayca K. Fackler

Carlson H. Coogler

Year
2023
Short Description

Big ideas in science education are meant to be interpretive frameworks that empower student learning. Unfortunately, outside of the broad conception of scientific evaluation, there are few theoretical explanations of how this might happen. Therefore, we contribute one such explanation, an instructional concept called integrative analysis wherein students use a big idea to interconnect isolated scenarios and enrich their meanings.

Understanding Students' Sense-Making Processes When Faced with Unexpected Data: A Case Study in High School Biology

Examining a lesson in a high school biology unit that utilized noisy sensor data, we sought to understand the ways students engaged in active reasoning about the data and the factors that influenced this process. Video analysis centers on one small group of students as they learn to use sensors to collect data on osmosis, focusing particularly on their reactions to variation within and across experimental runs.

Author/Presenter

Natalya St. Clair

Brandi Ediss

Lynn Stephens

Lead Organization(s)
Year
2021
Short Description

Examining a lesson in a high school biology unit that utilized noisy sensor data, we sought to understand the ways students engaged in active reasoning about the data and the factors that influenced this process. Video analysis centers on one small group of students as they learn to use sensors to collect data on osmosis, focusing particularly on their reactions to variation within and across experimental runs.

Innovator Interview: Steve Roderick

The Concord Consortium. (2021). Innovator Interview: Steve Roderick. @Concord, 25(1), 15.

Author/Presenter

The Concord Consortium

Lead Organization(s)
Year
2021
Short Description

Interview with Steve Roderick about helping teachers on the InquirySpace project bring more authentic science experiences to their classes.