Technology

Expanding Uses of the STEM Observation Protocol (STEM-OP): Secondary Science Teachers’ Reflections on Integrated STEM Practice

There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice.

Author/Presenter

Emily Dare

Joshua Ellis

Christopher Irwin

Lead Organization(s)
Year
2025
Short Description

There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice. This exploratory case study was designed to better understand secondary science teachers’ reflections on the STEM-OP by addressing the following research questions: 1) What are secondary science teachers’ reflections on integrated STEM practices as measured by the STEM-OP? and 2) In what ways do secondary science teachers envision using the STEM-OP as a tool in their practice?

STEM Teacher Characteristics and Mobility: Longitudinal Evidence from the American Midwest, 2010 Through 2023

This study examines the demographics, qualifications, and turnover of STEM teachers in Kansas and Missouri—two contiguous, predominantly rural states in the Midwestern region of the United States. The existing literature lacks detailed insights regarding U.S. STEM teachers, especially with recent economic and social changes over the COVID-19 pandemic, and there is particularly limited evidence regarding STEM teachers in the U.S. Midwest.

Author/Presenter

Chanh B. Lam

Yujia Liu

J. Cameron Anglum

Tuan D. Nguyen

Lead Organization(s)
Year
2025
Short Description

This study examines the demographics, qualifications, and turnover of STEM teachers in Kansas and Missouri—two contiguous, predominantly rural states in the Midwestern region of the United States. The existing literature lacks detailed insights regarding U.S. STEM teachers, especially with recent economic and social changes over the COVID-19 pandemic, and there is particularly limited evidence regarding STEM teachers in the U.S. Midwest. Utilizing large-scale administrative longitudinal data, we filled part of this gap by documenting the characteristics and turnover patterns of STEM teachers in Kansas and Missouri over a 13-year period, from 2010 through 2023.

Socioscientific Issues: Promoting Science Teachers’ Pedagogy on Social Justice

Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information.

Author/Presenter

Augusto Z. Macalalag Jr.

Alan Kaufmann

Benjamin Van Meter

Aden Ricketts

Erica Liao

Gabrielle Ialacci

Lead Organization(s)
Year
2024
Short Description

Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information. This study highlights the value of integrating SSI in science education to engage students with social justice.

Transforming Teachers’ Roles and Agencies in the Era of Generative AI: Perceptions, Acceptance, Knowledge, and Practices

This paper explores the transformative impact of generative artificial intelligence (GenAI) on teachers’ roles and agencies in education, presenting a comprehensive framework that addresses teachers’ perceptions, knowledge, acceptance, and practices of GenAI. As GenAI technologies, such as ChatGPT, become increasingly integrated into educational settings, both in-service and future teachers are required to adapt to evolving classroom dynamics, where AI plays a significant role in content creation, personalized learning, and student engagement.

Author/Presenter

Xiaoming Zhai

Lead Organization(s)
Year
2024
Short Description

This paper explores the transformative impact of generative artificial intelligence (GenAI) on teachers’ roles and agencies in education, presenting a comprehensive framework that addresses teachers’ perceptions, knowledge, acceptance, and practices of GenAI.

Employing Automatic Analysis Tools Aligned to Learning Progressions to Assess Knowledge Application and Support Learning in STEM

We discuss transforming STEM education using three aspects: learning progressions (LPs), constructed response performance assessments, and artificial intelligence (AI). Using LPs to inform instruction, curriculum, and assessment design helps foster students’ ability to apply content and practices to explain phenomena, which reflects deeper science understanding. To measure the progress along these LPs, performance assessments combining elements of disciplinary ideas, crosscutting concepts and practices are needed.

Author/Presenter

Leonora Kaldaras

Kevin Haudek

Joseph Krajcik

Year
2024
Short Description

We discuss transforming STEM education using three aspects: learning progressions (LPs), constructed response performance assessments, and artificial intelligence (AI). Using LPs to inform instruction, curriculum, and assessment design helps foster students’ ability to apply content and practices to explain phenomena, which reflects deeper science understanding. To measure the progress along these LPs, performance assessments combining elements of disciplinary ideas, crosscutting concepts and practices are needed. However, these tasks are time-consuming and expensive to score and provide feedback for. Artificial intelligence (AI) allows to validate the LPs and evaluate performance assessments for many students quickly and efficiently.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

A Comparison of Responsive and General Guidance to Promote Learning in an Online Science Dialog

Students benefit from dialogs about their explanations of complex scientific phenomena, and middle school science teachers cannot realistically provide all the guidance they need. We study ways to extend generative teacher–student dialogs to more students by using AI tools. We compare Responsive web-based dialogs to General web-based dialogs by evaluating the ideas students add and the quality of their revised explanations.

Author/Presenter

Libby Gerard

Marcia C. Linn

Marlen Holtmann

Year
2024
Short Description

Students benefit from dialogs about their explanations of complex scientific phenomena, and middle school science teachers cannot realistically provide all the guidance they need. We study ways to extend generative teacher–student dialogs to more students by using AI tools.