Broadening Participation

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

Principal Investigator:
The ULTIMATE (Understanding Learning Trajectories In Math: Advancing Teacher Education) project will evaluate Learning Trajectories as a complete early mathematics intervention by supporting teachers in deepening their understanding of how children learn mathematics and how to incorporate this understanding. Drs. Clements and Sarama have built a professional development tool, called Learning and Teaching with Learning Trajectories, or [LT]2. The team will investigate the positive impacts both in supporting teachers and on students' learning of mathematics.
Click image to preview:
Target Audience:

Fostering Equitable Groupwork to Promote Conceptual Mathematics Learning

Principal Investigator:
This project will document how middle grades mathematics students learn equitable collaboration through an ongoing effort to implement groupwork using the model of Complex Instruction. The primary purpose of this study is to describe how 6th-7th grade students learn to collaborate with one another to make sense of mathematics, and how students and their teacher negotiate what constitutes equitable collaboration.
Click image to preview:
Target Audience:

CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT) for Students with Learning Disabilities

Principal Investigator:

This poster describes the outcomes, dissemination, and scaling of project work from "Fraction Activities and Assessment for Conceptual Teaching (FAACT)." We describe the results of a pilot study for FAACT, free curriculum materials, and how the work has been translated to a new game based project, Model Mathematics Education (ModelME). A link to an intro video for ModelMe's game based curriculum will be shared.

Co-PI(s): Matthew Marino and Michelle Taub, University of Central Florida

Click image to preview:

CAREER: Designing and Enacting Mathematically Captivating Learning Experiences for High School Mathematics

Principal Investigator:

This project explores how secondary mathematics teachers can design mathematically captivating learning experiences using the mathematical story framework to improve aesthetic opportunities with complex mathematical content. This study has developed and tested 28 MCLEs. By comparing captivating lessons with those that students describe as dull or boring, we have identified multiple characteristics of captivating mathematics lessons. Also, in addition to raising student interest, MCLEs positively impact teacher and student questioning.

Click image to preview:
Target Audience:

Developing Transmedia Engineering Curricula Using Cognitive Tools to Impact Learning and the Development of STEM Identity

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity. In IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—are used to design learning environments that both engage learners and help them organize knowledge productively. We have combined IE with transmedia storytelling to develop two multi-week engineering units and six shorter engineering lessons.

Author/Presenter

Glenn W. Ellis

Jeremiah Pina

Rebecca Mazur

Al Rudnitsky

Beth McGinnis-Cavanaugh

Isabel Huff

Sonia Ellis

Crystal M. Ford

Kate Lytton

Kaia Claire Cormier

Year
2020
Short Description

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity.

Resource(s)

Developing Transmedia Engineering Curricula Using Cognitive Tools to Impact Learning and the Development of STEM Identity

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity. In IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—are used to design learning environments that both engage learners and help them organize knowledge productively. We have combined IE with transmedia storytelling to develop two multi-week engineering units and six shorter engineering lessons.

Author/Presenter

Glenn W. Ellis

Jeremiah Pina

Rebecca Mazur

Al Rudnitsky

Beth McGinnis-Cavanaugh

Isabel Huff

Sonia Ellis

Crystal M. Ford

Kate Lytton

Kaia Claire Cormier

Year
2020
Short Description

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity.

Resource(s)

Preparing Paraeducators for the Teacher Pipeline: Building Confidence Through Professional Development in Mathematics

The article describes our project that was designed to provide experiences to support paraeducators' professional growth in a large urban district by building their mathematical knowledge for teaching and leadership. Providing paras with professional learning opportunities can open pathways to teaching positions, giving them the potential to diversify the teaching pool and address teacher shortages.

Author/Presenter

Judy Storeygard

Karen Mutch-Jones

Lead Organization(s)
Year
2020
Short Description

The article describes our project that was designed to provide experiences to support paraeducators' professional growth in a large urban district by building their mathematical knowledge for teaching and leadership. Providing paras with professional learning opportunities can open pathways to teaching positions, giving them the potential to diversify the teaching pool and address teacher shortages.

Think Alouds: Informing Scholarship and Broadening Partnerships through Assessment

Think alouds are valuable tools for academicians, test developers, and practitioners as they provide a unique window into a respondent’s thinking during an assessment. The purpose of this special issue is to highlight novel ways to use think alouds as a means to gather evidence about respondents’ thinking. An intended outcome from this special issue is that readers may better understand think alouds and feel better equipped to use them in practical and research settings.

Author/Presenter

Jonathan David Bostic

Lead Organization(s)
Year
2021
Short Description

Introduction to special issue focusing on think alouds and response process evidence. This work cuts across STEM education scholarship and introduces readers to robust means to engage in think alouds.

Gathering Response Process Data for a Problem-Solving Measure through Whole-Class Think Alouds

Response process validity evidence provides a window into a respondent’s cognitive processing. The purpose of this study is to describe a new data collection tool called a whole-class think aloud (WCTA). This work is performed as part of test development for a series of problem-solving measures to be used in elementary and middle grades. Data from third-grade students were collected in a 1–1 think-aloud setting and compared to data from similar students as part of WCTAs. Findings indicated that students performed similarly on the items when the two think-aloud settings were compared.

Author/Presenter

Jonathan David Bostic

Toni A. Sondergeld

Gabriel Matney

Gregory Stone

Tiara Hicks

Lead Organization(s)
Year
2021
Short Description

This is a description of a new methodological tool to gather response process validity evidence. The context is scholarship within mathematics education contexts.

Gathering Response Process Data for a Problem-Solving Measure through Whole-Class Think Alouds

Response process validity evidence provides a window into a respondent’s cognitive processing. The purpose of this study is to describe a new data collection tool called a whole-class think aloud (WCTA). This work is performed as part of test development for a series of problem-solving measures to be used in elementary and middle grades. Data from third-grade students were collected in a 1–1 think-aloud setting and compared to data from similar students as part of WCTAs. Findings indicated that students performed similarly on the items when the two think-aloud settings were compared.

Author/Presenter

Jonathan David Bostic

Toni A. Sondergeld

Gabriel Matney

Gregory Stone

Tiara Hicks

Lead Organization(s)
Year
2021
Short Description

This is a description of a new methodological tool to gather response process validity evidence. The context is scholarship within mathematics education contexts.