Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

This poster describes the outcomes, dissemination, and scaling of project work from "Fraction Activities and Assessment for Conceptual Teaching (FAACT)." We describe the results of a pilot study for FAACT, free curriculum materials, and how the work has been translated to a new game based project, Model Mathematics Education (ModelME). A link to an intro video for ModelMe's game based curriculum will be shared.
Co-PI(s): Matthew Marino and Michelle Taub, University of Central Florida
This project explores how secondary mathematics teachers can design mathematically captivating learning experiences using the mathematical story framework to improve aesthetic opportunities with complex mathematical content. This study has developed and tested 28 MCLEs. By comparing captivating lessons with those that students describe as dull or boring, we have identified multiple characteristics of captivating mathematics lessons. Also, in addition to raising student interest, MCLEs positively impact teacher and student questioning.
This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity. In IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—are used to design learning environments that both engage learners and help them organize knowledge productively. We have combined IE with transmedia storytelling to develop two multi-week engineering units and six shorter engineering lessons.
This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity.
This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity. In IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—are used to design learning environments that both engage learners and help them organize knowledge productively. We have combined IE with transmedia storytelling to develop two multi-week engineering units and six shorter engineering lessons.
This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity.
The article describes our project that was designed to provide experiences to support paraeducators' professional growth in a large urban district by building their mathematical knowledge for teaching and leadership. Providing paras with professional learning opportunities can open pathways to teaching positions, giving them the potential to diversify the teaching pool and address teacher shortages.
The article describes our project that was designed to provide experiences to support paraeducators' professional growth in a large urban district by building their mathematical knowledge for teaching and leadership. Providing paras with professional learning opportunities can open pathways to teaching positions, giving them the potential to diversify the teaching pool and address teacher shortages.
Think alouds are valuable tools for academicians, test developers, and practitioners as they provide a unique window into a respondent’s thinking during an assessment. The purpose of this special issue is to highlight novel ways to use think alouds as a means to gather evidence about respondents’ thinking. An intended outcome from this special issue is that readers may better understand think alouds and feel better equipped to use them in practical and research settings.
Introduction to special issue focusing on think alouds and response process evidence. This work cuts across STEM education scholarship and introduces readers to robust means to engage in think alouds.
Response process validity evidence provides a window into a respondent’s cognitive processing. The purpose of this study is to describe a new data collection tool called a whole-class think aloud (WCTA). This work is performed as part of test development for a series of problem-solving measures to be used in elementary and middle grades. Data from third-grade students were collected in a 1–1 think-aloud setting and compared to data from similar students as part of WCTAs. Findings indicated that students performed similarly on the items when the two think-aloud settings were compared.
This is a description of a new methodological tool to gather response process validity evidence. The context is scholarship within mathematics education contexts.
Response process validity evidence provides a window into a respondent’s cognitive processing. The purpose of this study is to describe a new data collection tool called a whole-class think aloud (WCTA). This work is performed as part of test development for a series of problem-solving measures to be used in elementary and middle grades. Data from third-grade students were collected in a 1–1 think-aloud setting and compared to data from similar students as part of WCTAs. Findings indicated that students performed similarly on the items when the two think-aloud settings were compared.
This is a description of a new methodological tool to gather response process validity evidence. The context is scholarship within mathematics education contexts.