High

The Design and Implementation of a Bayesian Data Analysis Lesson for Pre-Service Mathematics and Science Teachers

With the rise of the popularity of Bayesian methods and accessible computer software, teaching and learning about Bayesian methods are expanding. However, most educational opportunities are geared toward statistics and data science students and are less available in the broader STEM fields. In addition, there are fewer opportunities at the K-12 level. With the indirect aim of introducing Bayesian methods at the K-12 level, we have developed a Bayesian data analysis activity and implemented it with 35 mathematics and science pre-service teachers.

Author/Presenter

Mine Dogucu

Sibel Kazak

Joshua M. Rosenberg

Lead Organization(s)
Year
2024
Short Description

With the rise of the popularity of Bayesian methods and accessible computer software, teaching and learning about Bayesian methods are expanding. However, most educational opportunities are geared toward statistics and data science students and are less available in the broader STEM fields. In addition, there are fewer opportunities at the K-12 level. With the indirect aim of introducing Bayesian methods at the K-12 level, we have developed a Bayesian data analysis activity and implemented it with 35 mathematics and science pre-service teachers. In this article, we describe the activity, the web app supporting the activity, and pre-service teachers’ perceptions of the activity.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Values Reflected in Energy-Related Physics Concepts

Gray, K. E. & Scherr, R. E. (2025). Values reflected in energy-related physics concepts. The Physics Teacher, 63, 240–242. https://doi.org/10.1119/5.0137442

Author/Presenter

Kara E. Gray

Rachel E. Scherr

Year
2025
Short Description

Physics has the reputation of being purely about nature, not about people or culture. Physics concepts such as time, space, and mass are often considered to be independent of sociopolitical concepts such as democracy and capitalism. However, physics concepts are not “out there” in the universe, free of cultural values: rather, they are created and sustained by people in specific times and places, for the purpose of addressing particular social needs and empowering particular people.

The Benefits of Modesty: Considering Incremental Professional Development for Mathematics Teachers

Professional development (PD) for mathematics teachers often emphasizes transformative instructional change. However, a more modest, incremental approach may offer a higher likelihood of success in ways that complement transformational efforts. This Editorial discusses the potential advantages of incremental PD where teachers make small but meaningful improvements to their practice over time. We explore the differences between transformational PD and incremental PD as evidenced by the articles in this Special Issue.

Author/Presenter

Samuel Otten

Zandra de Araujo

Amber G. Candela

Year
2025
Short Description

Professional development (PD) for mathematics teachers often emphasizes transformative instructional change. However, a more modest, incremental approach may offer a higher likelihood of success in ways that complement transformational efforts. This Editorial discusses the potential advantages of incremental PD where teachers make small but meaningful improvements to their practice over time.

Teachers as Agentic Synthesizers: Recontextualizing Personally Meaningful Practices from Professional Development

Background
Teacher learning from professional development (PD) remains undertheorized. Most PD studies focus on its content or structure to gauge learning, leaving substantive gaps in our understanding of teacher learning processes and the role of contexts. Therefore, we investigate teachers’ learning as they take practices from PD and adapt them to their own settings.

Author/Presenter

Samantha A. Marshall

Ilana S. Horn

Year
2025
Short Description

Teacher learning from professional development (PD) remains undertheorized. Most PD studies focus on its content or structure to gauge learning, leaving substantive gaps in our understanding of teacher learning processes and the role of contexts. Therefore, we investigate teachers’ learning as they take practices from PD and adapt them to their own settings.

Mathematics Teacher Persistence in Online Professional Development: Emerging (Mis)alignments Between Instructional Expectations and Professional Development Utility

Sustained professional development is critical to support mathematics teachers’ development of ambitious instructional practices. This study aimed to better understand the factors and conditions that impact mathematics teachers’ persistent participation in an optional and online professional development that includes a sequence of three online workshops focused on doing mathematics and examining student mathematics work.

Author/Presenter

Anthony Matranga

Jason Silverman

Lead Organization(s)
Year
2025
Short Description

Sustained professional development is critical to support mathematics teachers’ development of ambitious instructional practices. This study aimed to better understand the factors and conditions that impact mathematics teachers’ persistent participation in an optional and online professional development that includes a sequence of three online workshops focused on doing mathematics and examining student mathematics work.

Exploring Students’ Engagement with Inscription-based Science Practices from the Perspective of Epistemic (Un)certainty

Learning about natural hazards and risks through science practices entails considerations of uncertainty. We examined ways in which students expressed their epistemic (un)certainty about claims they made based on their inscription-based science practices.

Author/Presenter

Hee-Sun Lee

Amy Pallant

Gey-Hong Gweon

Trudi Lord

Christopher Lore

Lead Organization(s)
Year
2025
Short Description

Learning about natural hazards and risks through science practices entails considerations of uncertainty. We examined ways in which students expressed their epistemic (un)certainty about claims they made based on their inscription-based science practices.