This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.
Cadre-Admin
This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.
This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.
This project will design, develop, and examine the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection.
This project will design, develop, and examine the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection.
This project is developing, validating, and evaluating computer modeling-based formative assessments to improve student learning in chemistry. Activities include developing a series of computer models related to key topics in high school chemistry, developing questions to probe student understanding of matter and energy, identifying teaching and learning resources appropriate for different levels of student conceptual understanding, and developing professional development resources on integrating formative assessments into high school chemistry courses.
This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.
Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Thanheiser)
This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.
This project is developing Earth and Space Science multimedia educative curriculum materials (MECMs) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The project is investigating the impact of the MECMs on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments.
This project is working to develop, implement, and research the introduction of data experiences and practices into a series of interdisciplinary, middle school project-based learning modules. The project examines how interdisciplinary data education can provide opportunities for students to take more control of their own learning and develop positive identities related to data, through integration with social studies and science topics. Curriculum modules and teaching resources produced by the project serve as guides for subsequent efforts at integrating data science concepts into teaching and learning in various subject areas.
This project is working to develop, implement, and research the introduction of data experiences and practices into a series of interdisciplinary, middle school project-based learning modules. The project examines how interdisciplinary data education can provide opportunities for students to take more control of their own learning and develop positive identities related to data, through integration with social studies and science topics. Curriculum modules and teaching resources produced by the project serve as guides for subsequent efforts at integrating data science concepts into teaching and learning in various subject areas.
This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.
Leaders in mathematics and elementary education are organizing and hosting a conference that brings together researchers from mathematics education, cognitive science, and special education. Organized over three face-to-face meetings with follow-up virtual meetings, the conference is designed to generate a set of teaching and learning principles as well as a collaborative research agenda among the fields, reflecting existing agreements regarding early mathematics and uncovering areas of disagreement where further exchange and generation of knowledge is needed.
Leaders in mathematics and elementary education are organizing and hosting a conference that brings together researchers from mathematics education, cognitive science, and special education. Organized over three face-to-face meetings with follow-up virtual meetings, the conference is designed to generate a set of teaching and learning principles as well as a collaborative research agenda among the fields, reflecting existing agreements regarding early mathematics and uncovering areas of disagreement where further exchange and generation of knowledge is needed.
This project is developing Core Math Tools, a suite of Java-based software including a computer algebra system (CAS), interactive geometry, statistics, and simulation tools together with custom apps for exploring specific mathematical or statistical topics. Core Math Tools is freely available to all learners, teachers, and teacher educators through a dedicated portal at the National Council of Teachers of Mathematics (NCTM) web site.
In COVID Connects Us, the project team investigates the challenges of learning how to support justice-centered ambitious science teaching (JuST). The project team will partner with networks of secondary science teachers as they first implement a common unit aimed at engaging youth in science and engineering practices in ways that are culturally sustaining, focused on explanation-construction and intentionally anti-oppressive. The teachers will then use their shared experiences to revise future instruction in ways that are justice-centered and that engage students in the ways research suggests is important for their learning.
This project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning.
This award is for the funding of a regional conference to study the future of STEM education, the impact of underrepresented and disadvantaged groups with regards to STEM, and STEM job growth and workforce development in a regional, as opposed to a national, context.
This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so.
This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years.