This project will advance the research base and leadership capacity supporting K-12 mathematics curriculum design, analysis, implementation and evaluation. It will serve the K-12 educational community by focusing scholarly inquiry and professional development around the issues of mathematics curriculum, examining and characterizing their role and influence on both teaching and student learning. The Center will test strategies and produce new knowledge about the impact of curriculum materials on student and teacher learning.
Cadre-Admin
To successfully understand and address complex and important questions in the field of environmental science, many kinds of communities’ knowledge about their local environment need to be engaged. This one-year partnership development project involves a collaboration to design an approach that would yield opportunities for K-12 students to learn about environmental science in ways that honor both traditional STEM knowledge and Native ways of knowing among the Pomo community in California.
This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs.
This project draws from the expertise of a fully collaborative educator-scientist team to create learning progressions, curricular units and assessment instruments towards large scale research on the teaching and learning of climate change and impacts by 7-12th graders in primarily under-resourced schools. Products include eight week curricular units, IPCC-compliant simplified future scenarios, an online interface with guided predictive distribution modeling, and research results.
Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.
Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.
This project is studying the impact of implementing a NSF-funded, high school mathematics curriculum that emphasizes mathematical habits of mind. This curriculum focuses on ways of thinking and doing mathematics in contrast with curricula that focus on mathematical topics. The project is studying the development of teachers' mathematical knowledge for teaching and their capacity to align their instruction with the new curriculum.
This project is studying how young children in grades K-2 understand mathematical concepts that are foundational for developing algebraic thinking. Researchers are contributing to an ongoing effort to develop a learning trajectory that describes how algebraic concepts are developed. The project uses teaching experiments, with researchers talking directly to students as they explore algebraic ideas. They explore how students think about and develop concepts related to covariation, representations of functions, relationships among variable, and generalization.
This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science.
Closing the Math Achievement Gap for English Language Learners: Technology Resources for Pre-algebra
The project addresses the relatively poor mathematics achievement of students who are not proficient in English. It includes research on how English language learners in beginning algebra classes solve math word problems with different text characteristics. The results of this research inform the development of technology-based resources to support ELLs’ ability to learn mathematics through instruction in English, including tutorials in math vocabulary, integrated glossaries, and interactive assistance with forming equations from word problem text.
The research goal of this project is to evaluate whether an early childhood science education program, implemented in low-income preschool settings produces measurable impacts for children, teachers, and parents. The study is determining the efficacy of the program on Science curriculum in two models, one in which teachers participate in professional development activities (the intervention), and another in which teachers receive the curriculum and teachers' guide but no professional development (the control).
This partnership development project deepens an existing partnership between the researcher and leadership of an elementary school in central Texas that serves predominantly Black and Latine students. The project focuses on engaging community members, teachers, and learners at the school in conversation about how mathematics teaching and learning might be improved. This partnering is important because the relationship between schools and communities is often marked by one-way communication and decision-making without dialogue. By promoting dialogue, all members of this partnership can learn more about the mathematical storylines embedded into the community, that is, the stories that community members, teachers, and learners share about their personal relationship to mathematics teaching and learning.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This RAPID project responds to the Buffalo blizzard of 2022 (Buffalo, NY) by developing, with and for the community, a science education curriculum framework focused on disaster justice and resilience. This project will document the science education human and social impact of the blizzard by capturing the experiences, reflections, and needs of science teachers, Black and Brown community leaders, and families who were directly affected.
This RAPID project responds to the Buffalo blizzard of 2022 (Buffalo, NY) by developing, with and for the community, a science education curriculum framework focused on disaster justice and resilience. This project will document the science education human and social impact of the blizzard by capturing the experiences, reflections, and needs of science teachers, Black and Brown community leaders, and families who were directly affected.
This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.
This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.