This project addresses biology teachers and students at the high school level, responding to the exponential increases occurring in biology knowledge today and the need for students to understand the experimental basis behind biology concepts. The project studies the feasibility of engaging students in an environment where they can learn firsthand how science knowledge develops in the fields of bioinformatics and DNA science by performing collaborative, simulated experiments to solve open-ended problems.
Projects
This project is developing and testing a prototype electronic teacher's guide for a 12-week genetics unit in the NSF-funded curriculum titled Foundation Science: Biology to determine how it impacts high school teachers' learning and practice. The electronic guide, which is based on an existing print guide, has a flexible design so that it anticipates and meets the curriculum planning and support needs of teachers with different knowledge/skills profiles.
This project is developing a two-year, intensive professional development model to build middle-grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model helps teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice.
This project will conduct a 1.5 day regional technical assistance and information conference/workshop for Minority Serving Institutions (MSIs) to broaden their participation in the Division of Research on Learning in Formal and informal Settings (DRL) programs. The workshop will consist of faculty institutional teams and will develop their research or program ideas and to become more skillful in the preparation and development of competitive proposals.
This project is revising and field testing six existing modules and developing, pilot testing, and field testing two engineering modules for required middle school science and mathematics classes: Catch Me if You Can! with a focus on seventh grade life science; and Creating Bioplastics targeting eighth grade physical science. Each module addresses an engineering design challenge of relevance to industries in the region and fosters the development of engineering habits of mind.
The goals of STEM instruction are to educate a populace that is scientifically and mathematically literate and who can solve real-world problems by applying science and mathematics. This exploratory project is designed to study the effectiveness of professional development focused on the integration of mathematics and science instruction, mediated by technology tools, to improve middle school teachers' ability to teach scientific inquiry and mathematical problem solving.
The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
We developed and tested two ecology case study units for urban high school students underserved in their connection to nature. The case studies, based on digital media stories about current science produced by the American Museum of Natural History, use current scientific data to link ecological principles to daily life and environmental issues. Preliminary testing results show that treatment students made significantly higher gains than the control students on the project's major learning goals.
The Service, Teaching, and Research (STaR) Project supports networking of early career professionals in mathematics education in higher education. Summer conferences and academic year networking allow time for trust and collegiality to develop, and thereby provide opportunities for important issues/challenges to be identified and addressed. This sustained effort promotes networking, constructs an environment that allows working research groups to be established, and provides time for significant professional growth and leadership capacity to flourish.
This project investigates how high school students' understanding about design thinking compares to that of experienced practitioners and whether participation in a multiyear sequence of courses focused on engineering correlates with changes in design thinking. The project builds upon the Standards for Technological Literacy and courses developed at the University of Colorado and the University of Maryland, Baltimore County.
Founded on ethnomathematics research findings, this project aims to increase the mathematics learning of first-, fourth-, and seventh-grade elementary school Micronesian students. Plans are to develop and field-test culturally and linguistically sensitive grade-level curriculum units in specific mathematics topics, such as number and counting, division of whole numbers and fractions, and elements of geometry, focused on the indigenous mathematics learning experiences of eight distinct islands in the Pacific region.
This project is exploring how curricula and assessment using dynamic, interactive scientific visualizations of complex phenomena can ensure that all students learn significant science content. Dynamic visualizations provide an alternative pathway for students to understand science concepts, which can be exploited to increase the accessibility of a range of important science concepts. Computer technologies offer unprecedented opportunities to design curricula and assessments using visual technologies and to explore them in research, teaching, and learning.
This project is studying effects of linguistically sensitive science instructional materials by translating, enhancing, and evaluating culturally relevant and linguistically appropriate Collaborative Online Projects (originally written in Spanish) for middle school Spanish-speaking English Language Learners.
This project is developing 24 activities that span three years of a Physics high school science curriculum. The activities cover four themes: motion and energy, charge, structure, and light. This study aims to determine the extent to which exposure to these activities in one year influences performance on activities in a subsequent year and the extent to which students can recall concepts from prior years and apply them to new activities in a different discipline.
The overriding goal of this project is to strengthen the “T” and “E” components of STEM in high school courses taken by a majority of students. Our hypothesis is that increasing the presence of engineering and technological design at the high school level, specifically by incorporating engineering activities in high school biology and chemistry classes, will improve students’ understanding of science concepts and strengthen students’ 21st century skills more than traditional methods.
This project is developing software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, conjecture improved strategies, and test their strategies in another round of the game.
This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.
This project operationalizes research in number, operation, and early algebra. It builds on the paradigm of Dynamic Geometry (the interactive and continuous manipulation of geometric shapes and constructions) with a new technological paradigm, Dynamic Number, centered on the direct manipulation of numerical representations and constructions. Using The Geometer’s Sketchpad as a starting point, KCP Technologies is developing new software tools to deepen students’ conceptions of number and early algebra in grades 2–8.
This project is conducting repeated randomized control trials of an approach to high school geometry that utilizes Dynamic Geometry (DG) software and supporting instructional materials to supplement ordinary instructional practices. It compares effects of that intervention with standard instruction that does not make use of computer drawing tools.
This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).
This project is designed to enhance and study the development of elementary science teachers’ skills in managing productive classroom talk in inquiry-based physical science studies of matter. The project hypothesizes that aligning professional learning with conceptually-driven curricula and emphasizing the development of scientific discourse changes classroom culture and increases student learning. The project is developing new Web-based resources, Talk Science PD, to help elementary teachers facilitate scientific discourse.
This project targets first- and second-grade children who struggle to develop a deeper understanding of the mathematical strand of number and operation. The research team will (a) identify the various specific cognitive obstacles of first- and second-grade students who are struggling in number and operation, and (b) explore how instructional tasks designed to address specific cognitive obstacles affect the learning trajectory of struggling learners in number and operation.
This project is refining and testing two case study units on contemporary issues in ecology for urban middle and high school students underserved in their connection to nature. The case studies are based on two Science Bulletins, digital media stories about current science produced by the American Museum of Natural History (AMNH), which use current scientific data to link ecological principles to real-world environmental issues, and to link issues to human daily life.
This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.
This project is developing a system for producing automated professional mentoring while students play computer games based on STEM professions. The project explores a specific hypothesis about STEM mentoring: A sociocultural model as the basis of an automated tutoring system can provide a computational model of participation in a community of practice, which produces effective professional feedback from nonplayercharacters in a STEM learning game.