Talk Science: Scalable, Web-Based Professional Learning to Improve Science Achievement

This project is designed to enhance and study the development of elementary science teachers’ skills in managing productive classroom talk in inquiry-based physical science studies of matter. The project hypothesizes that aligning professional learning with conceptually-driven curricula and emphasizing the development of scientific discourse changes classroom culture and increases student learning. The project is developing new Web-based resources, Talk Science PD, to help elementary teachers facilitate scientific discourse.

Project Evaluator
Katherine Paget
Full Description


Scalable, Web-based Professional Learning to Improve Science Achievement


      In spite of its centrality in science, genuine scientific argumentation is rarely observed in classrooms. Instead, most of the talk comes from teachers, and it seems oriented primarily toward persuading students of the validity of the scientific worldview…if the educational goal is to help students understand not just the conclusions of science, but also how one knows and why one believes, then talk needs to focus on how evidence is used in science for the construction of explanations. (Duschl, Schweingruber et al. 2007)

Research from the learning sciences, classroom research, and the National Research Council’s consensus reports on teaching and learning science are clear: talk is central to doing and learning science well (Duschl and Osborne 2002; Duschl, Schweingruber et al. 2007; Michaels, Shouse et al. 2008). Discussion is essential to inquiry, enabling students to compare and evaluate observations and data, raise questions, develop hypotheses and explanations, debate and explore alternative interpretations, develop insight into reasoning they may not have considered, and “make meaning” of inquiry experiences. In fact, mastery of science is to a large extent mastery of its specialized uses of language (Lemke 1993).

            Yet effective scientific discourse is mostly absent in classrooms (Barnes 1992; Lemke 1993; Alexander 2001; Cazden 2001). Few teachers are sufficiently prepared to manage classroom talk or effectively improvise and facilitate dialogue in the unpredictable flow of classroom discussion. Thus, despite well-designed curricula and well-intentioned teachers, students are failing to obtain a deep understanding of science and to develop critical 21st century skills, such as negotiating shared meaning and co-construction of problem resolution (Dede 2007). This is the challenge we are addressing.

TERC, in close collaboration with the Mason School in Roxbury, MA, the Benjamin A. Banneker School in Cambridge, MA, Newton Massachusetts Schools, Lamoille North Schools in Vermont, and scientists and linguists from three Boston area universities, is:   

1.     developing and pilot-testing Talk Science!, a web-enabled collection of rich, multimedia professional learning resources for 4th and 5th grade teachers that supports the NSF-funded Inquiry Curriculum and that is focused on promoting scientific discourse in the classroom. These resources are being deployed on the Inquiry Project web site ( This effort is resulting in a model of web-based professional learning that is scalable, accessible and of consistent quality.

2.     investigating the development of teachers' skills with regard to facilitating productive discourse in the science classroom. We hypothesized that aligning professional learning with conceptually-driven curriculum and emphasizing development of scientific discourse would promote changes in classroom culture and increased student learning. We further hypothesized that as teachers implement strategies for scientific discourse, the nature of talk in classrooms and classroom culture will shift toward shared scientific meaning-making. This research is currently underway with results expected by December 2012.


Talk Science! PD is comprised of two nine-week professional development courses of study (i.e. professional pathways), aligned with the 4th and 5th grade web-based, Inquiry Curriculum. Thus, curriculum and professional learning “live” together side-by-side within the same web site so teachers can shift seamlessly between the curriculum and their own professional learning as they prepare to teach. The professional development is comprised of three main components: classroom cases, scientist cases, and talk strategies.


We are using a pedagogical approach in which teachers strengthen their understanding of science, develop specific pedagogical skills, and implement skills into their teaching through a cognitive apprenticeship model (Collins, Brown et al). This involves 1) modeling, coaching, and scaffolding that help teachers acquire professional skills and scientific understanding through observation (in our case video) and guided practice, 2) articulation and reflection in which teachers articulate their understanding and questions, and 3) exploration in which they incorporate new practices into their teaching.


Talk Science! is based on four major principles that effectively change teacher practice and student learning:

  1. Close alignment between professional learning and specific curriculum offers a relevant context for teacher learning and ensures transfer from professional learning to classroom application.
  2. Understanding science as a knowledge-generating enterprise helps teachers facilitate student learning that deepens understanding of core concepts and blends the development of conceptual understanding and disciplinary practice.
  3. Developing abilities to facilitate productive academic talk in the classroom helps teachers establish a classroom culture where norms of discourse are in place and students make claims based on evidence and advance toward deeper understanding of scientific ideas.
  4. Providing opportunity for teachers to work together and learn from each other while using the affordances of web-based technologies to exploit the power of professional learning communities.

Project Materials