The ability to express scientific ideas in both written and oral form is an important 21st century skill. This project would help teachers help students achieve these skills through automating an effective feedback process, in ways that are customized to particular disciplines and local classroom needs, particularly in high needs districts. The project will contribute to knowledge about how students learn to write and how computer assisted systems can support this learning.
Projects
This project will research the development and application of new Next Generation curriculum exemplars for middle school science that align with the expectations of NGSS by (1) constructing diagnostic tools to assess the alignment of curricula; (2) using the tool for existing curricula in order to field test it; and (3) systematically investigating the effectiveness of the tool.
Despite the tremendous growth in the availability of mathematics videos online, little research has investigated student learning from them. The goal of this exploratory project is to create, investigate, and provide evidence of promise for a model of online videos that embodies a more expansive vision of both the nature of the content and the pedagogical approach than is currently represented in YouTube-style lessons.
This project will address widespread misunderstandings related to evolution by developing and testing a new high school curriculum unit and assessment measures focusing on biological evolution. The new curriculum will integrate the three dimensions of the Next Generation Science Standards, the Common Core Mathematics standards on reasoning abstractly and quantitatively, and an English Language Arts standard for writing arguments focused on discipline-specific content.
This descriptive study will systematically track key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students.
This project will provide curricular and pedagogical support by developing and evaluating teacher-ready curricular Digital Internship Modules for Engineering (DIMEs). DIMES will be designed to support middle school science teachers in providing students with experiences that require students to use engineering design practices and science understanding to solve a real-world problem, thereby promoting a robust understanding of science and engineering, and motivating students to increased interest in science and engineering.
This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.
The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions.
This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms.
This project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, and will develop ways for students to conduct experiments within the virtual world and to see the results of those experiments.
Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project developed a middle school ecology unit and related teacher professional development to help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.
This project involves designing, facilitating, and studying professional development (PD) to support equitable mathematics education. The PD will involve grades 4-8 mathematics teachers across three sites to support the design of a two-week institute focused on enhancing access and agency in relationship to important math practices, followed by ongoing interactions for the math teachers to engage in systematic inquiry of their practice over time to facilitate equitable mathematics teaching and learning in their classrooms.
This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.
Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.
This project builds on prior efforts to create teaching resources for high-school Advanced Placement Statistics teachers to use an open source statistics programming language called "R" in their classrooms. The project brings together datasets from a variety of STEM domains, and will develop exercises and assessments to teach students how to program in R and learn the underlying statistics concepts.
Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on robotics curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK).
The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. This study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance.
This project will develop and test an education partnership model focusing on climate change (The Climate Lab) that features inquiry-oriented and place-based learning. The project will develop a curriculum that will provide opportunities for middle school students and teachers to compare their locally collected data with historic data to create unique and powerful learning opportunities.
Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce.
This project will develop and test an education partnership model focusing on climate change (The Climate Lab) that features inquiry-oriented and place-based learning. The project will develop a curriculum that will provide opportunities for middle school students and teachers to compare their locally collected data with historic data to create unique and powerful learning opportunities.
This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses.
This project will examine the relationships among the factors that influence the implementation of the Exploring Computer Science (ECS), a pre-Advanced Placement curriculum that prepares students for further study in computer science. This study elucidates how variation in curricular implementation influences student learning and determines not only what works, but also for whom and under what circumstances.
This project will work with middle school science teachers to design and evaluate a set of data management tools that will be embedded in a web-based science curriculum. The project helps middle school science teachers monitor their students' progress, plan lessons, and reflect on their lessons. This project will identify characteristics of data management tools that are more likely to be used effectively by teachers and have a positive impact on science teaching and learning.
This project investigates the variation in teachers' practice of lesson study to identify effective and scalable design features of lesson study associated with student mathematics achievement growth in Florida. Lesson study is a teacher professional development model in which a group of teachers works collaboratively to plan a lesson, observe the lesson in a classroom with students, and analyze and discuss the student work and understanding in response to the lesson.
This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs.