Projects

08/15/2023

There is a need for resources for teacher education programs to help pre-service teachers learn about equitable mathematics approaches to teaching and learning. This project will develop modules, resources, and tools for exploring how teachers' understanding of equity changes from their last year of the preparation program into their first year of teaching. The tools and resources can be shared with other teacher education programs.

08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

08/01/2023

Access to high quality STEM education is highly variable depending on where one lives. In addition, early career teachers need support during their first years of teaching to be successful and help them stay in the profession. This project aims to provide in-service and beginning elementary school teachers increased opportunities to refine their mathematics teaching to support minoritized youth in racially diverse rural communities in Georgia that have less access to elementary mathematics specialists. This project follows and supports both beginning teachers (BTs) and elementary mathematics coaches (EMCs) over 5 years to develop and refine their mathematics teaching and coaching, respectively, using equity-based tools to guide reflection and conversations about both the BTs’ instructional practices and the EMCs’ coaching practices.

08/01/2023

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciencesthe relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

08/01/2023

In this project, the investigators will explore different ways that elementary school teachers participate in online learning in a platform that includes videos, discussions, and other resources for mathematics teaching. Knowing that teachers may use the platform to different degrees depending on their interest and time available, the study will investigate how different profiles of participation influence teachers' learning.

08/01/2023

A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.

08/01/2023

This project leverages the role of mentor teachers to support novices’ development of pedagogical reasoning and increase the likelihood that they will be prepared to engage in responsive mathematics teaching. Mentor teachers in three differently structured teacher education programs will receive professional development aimed at making their pedagogical reasoning visible and supporting them in engaging collaboratively with novices in this type of teacher thinking. The researchers will study mentor teachers’ development of collaborative pedagogical reasoning (Co-PR) and its relationship to responsive teaching.

08/01/2023

This project will contribute new knowledge on two aspects of participation in mathematics education. First, this research aims to understand how perceptions of race influence how teachers, future teachers, and researchers assess how bilingual children use their languages and movement to participate in mathematical activity. Second, it will explore ways to counter deficit views that influence teachers’, preservice teachers’, and researchers’ perceptions of these multiple ways of participating as inferior to what is traditionally considered as meaningful participation.

08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

08/01/2023

In this project, researchers will develop and investigate a novel professional development model to support mathematics teachers’ learning of responsive pedagogies for linguistically marginalized students. Working with secondary mathematics teachers in diverse settings in North Carolina, the project team will develop a series of workshops on linguistically responsive pedagogies tailored to participants’ challenges and school contexts. In addition to these workshops, as teachers enact linguistically responsive pedagogies in their classrooms, the research team will support their learning with video-coaching.

08/01/2023

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciencesthe relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

08/01/2023

In this project, the investigators will explore different ways that elementary school teachers participate in online learning in a platform that includes videos, discussions, and other resources for mathematics teaching. Knowing that teachers may use the platform to different degrees depending on their interest and time available, the study will investigate how different profiles of participation influence teachers' learning.

08/01/2023

This synthesis study includes a comprehensive systematic review and meta-analysis of research published since 2001 evaluating the impact of family engagement interventions on student STEM outcomes. The goal of this project is to (a) determine the effectiveness of family engagement interventions on STEM outcomes, (b) identify practices/components within interventions that are most effective for promoting STEM outcomes, and (c) reveal the extent to which the effects of family engagement interventions vary as a function of study quality and/or certain child, family, and community characteristics.

08/01/2023

This project leverages the role of mentor teachers to support novices’ development of pedagogical reasoning and increase the likelihood that they will be prepared to engage in responsive mathematics teaching. Mentor teachers in three differently structured teacher education programs will receive professional development aimed at making their pedagogical reasoning visible and supporting them in engaging collaboratively with novices in this type of teacher thinking. The researchers will study mentor teachers’ development of collaborative pedagogical reasoning (Co-PR) and its relationship to responsive teaching.

08/01/2023

Geometry instruction offers unique opportunities for students to apply design thinking to authentic problems. This project supports teachers in designing and implementing lessons using a human-centered design (HCD) approach. Geometry teachers will participate in lesson study for two years to plan problem-based geometry lessons and to observe student thinking during those lessons. The project investigates how teachers learn about and apply a human-centered framework for teaching geometry.

08/01/2023

This project brings together education researchers, high school science teachers, research scientists, and community-based organizations as co-design teams to modify science curriculum materials to be justice- and community-oriented. Building on existing partnerships between education researchers and 11 science teachers in two districts in Illinois, project teams will engage in cycles of curriculum analysis and adaptation over the course of 3 years. These professional learning cycles will develop pedagogically relevant content expertise, such as deepened understanding of locally relevant science phenomena, as well as infrastructure for community-engaged science instruction.

08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

08/01/2023

There have been prominent and widespread calls for high school science students to work with data in more complex ways that better align with and support the work of professional scientists and engineers. However, high school students' analysis and interpretation of scientific data is often limited in scope, complexity, and authentic purpose. This project aims to support and advance students' work with ecological data in high school biology classrooms by embracing a new approach: Bayesian data analysis methods. Such methods involve expressing initial ideas or beliefs and updating them quantitatively with data that students access or record. This project will empower 20 high school teachers and their approximately 1,200 students to make sense of data within and beyond classroom contexts. It also will involve sharing research findings, an educational technology tool for Bayesian data analysis, and curricular resources in open and accessible ways.

08/01/2023

Leaders in mathematics and elementary education are organizing and hosting a conference that brings together researchers from mathematics education, cognitive science, and special education. Organized over three face-to-face meetings with follow-up virtual meetings, the conference is designed to generate a set of teaching and learning principles as well as a collaborative research agenda among the fields, reflecting existing agreements regarding early mathematics and uncovering areas of disagreement where further exchange and generation of knowledge is needed.

08/01/2023

In this project, the investigators will explore different ways that elementary school teachers participate in online learning in a platform that includes videos, discussions, and other resources for mathematics teaching. Knowing that teachers may use the platform to different degrees depending on their interest and time available, the study will investigate how different profiles of participation influence teachers' learning.

08/01/2023

This project builds capacity for middle school teachers to enact and adapt integrated STEM curriculum units with their students. The units will focus on biomimicryexamining structures and functions found in nature and applying these to solve human problems, which combines science, engineering, and technology. The project enables teachers to design activities that are personally authentic to their students by supporting teachers to examine their students' assets, needs, and interests and center these during unit design.

08/01/2023

A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.

08/01/2023

This project leverages the role of mentor teachers to support novices’ development of pedagogical reasoning and increase the likelihood that they will be prepared to engage in responsive mathematics teaching. Mentor teachers in three differently structured teacher education programs will receive professional development aimed at making their pedagogical reasoning visible and supporting them in engaging collaboratively with novices in this type of teacher thinking. The researchers will study mentor teachers’ development of collaborative pedagogical reasoning (Co-PR) and its relationship to responsive teaching.

07/15/2023

The project aims to develop and research Intelligent Science Stations, a new genre of interactive science experiences. The Intelligent Science Stations will provide students in kindergarten to 4th grade with hands-on science experiences, augmented by an intelligent agent that offers feedback based on artificial intelligence computer vision. This innovative approach offers evidence-based, personalized support and feedback to children, while also assisting teachers in integrating more inquiry-based science learning into their classrooms. By modeling behaviors like asking questions, making predictions, and explaining scientific phenomena, the interactive AI system helps teachers enhance their classroom experiences.

07/15/2023

Today’s schools are experiencing increasing cultural and linguistic diversity and facing the challenge of creating meaningful connections between school science and student lived experiences outside of school. Middle school is a critical time to provide fundamental knowledge and encourage interest in STEM careers. In order to best impact learners during this critical period, science teachers need improved models to support the development and delivery of relevant curriculum materials to better serve all students in their classrooms. Highly supported design teams consisting of researchers, teachers, and both school and district science specialists will co-adapt existing district-generated science units to integrate socially and culturally relevant science practices and draw on students' diverse cultural and language practices as strengths.