The purposes of this conference include bringing together 150 participants from all aspects of STEM education to exchange ideas about research, curriculum, and assessment; to help teachers integrate research-based instructional strategies in their teaching; and to build sustainable collaborations between participants. It includes three days of parallel presentations and discussion followed by a two-day summer academy. A focus on research-based strategies that advance the successful participation of underrepresented groups is embedded in all activities.
Projects
This project is preparing teams to bring together research mathematicians and middle school teachers of mathematics through the use of Teacher's Circles. These Circles are groups of mathematicians and school mathematics teachers that meet regularly to do mathematics. Such Circles have been shown to be mathematically stimulating for both the teachers and the mathematicians and the students of both benefit from the relationship.
This project is examining the nature of mathematical discourse in middle school mathematics classrooms; the ways in which middle school mathematics teachers’ beliefs impact the discourse when working to enact reform-oriented instruction; and how this information can be used to incorporate practitioner research using concepts and tools of discourse analysis to improve mathematics instruction. The educational goal is to design a long-term professional development program that will continue beyond funding with other cohorts of teachers.
This bilateral workshop examines the preparation of mathematics teachers in the United States and China. It will initiate knowledge exchanges among teacher educators in both countries and forge a joint research agenda. Objectives include increasing the comparative knowledge base in both nations about promising practices in and existing challenges to mathematics teacher preparation and mathematics instruction, and promoting the exchange of ideas and exploration of questions and points for possible collaborative research in mathematics education.
The mayor of Birmingham is making a two year loan of XO laptops to middle school students in the Birmingham City Schools in Alabama. The educational and social changes that will occur in classrooms and the effects on several student outcomes are studied in this Small Grant for Exploratory Research. It is expected that access to technology will change the educational and social environment in classrooms and affect student outcomes.
The goal of this workshop is to advance the construction of new knowledge through international cooperation with Chinese counterparts in the teaching and learning of math and science at the elementary level in four areas: curriculum design and assessment; teacher preparation and professional development; effective use of the former; and reaching gifted and underserved populations. Approximately 120 people will attend, including 50 senior U.S. researchers, 25 early career researchers, 15 graduate students and 5 undergraduates.
This conference uses Student Evaluation Standards, published by the Joint Committee on Standards for Educational Evaluation, to engage a broad array of educational organizations in improving student achievement in STEM education through better evaluation practices that assess for learning. Participants learn more about the Student Evaluation Standards and use them together with a benchmarking process - distributed to them in the form of a toolkit - to enhance student evaluation processes.
This workshop aimed to develop a consensus on the best methods for selecting the most important outcomes of NSF’s mathematics and science education funding over the past few decades and for assessing the impacts of these outcomes. Issues addressed included how to select the NSF programs to be assessed; which persons should be interviewed; which methodologies should be used to assess program impact; and how data would be gathered, organized, reported, and disseminated.
The project makes use of technology to create timely, valid, and actionable reports to teachers by analyzing assessments and logs of student actions generated in the course of using computer-based curriculum materials. The reports allow teachers to make data-based decisions about alternative teaching strategies. The technology supports student collaborations and the assignment of different learning activities to groups, an essential function needed for universal design for learning (UDL).
This project enhances elementary students' engagement in and learning of science through visual communication skills using student-generated graphics in science notebooks. The products include two professional development modules for each grade level 2–5 that explicitly teach specific forms of graphical representation used in science, how these representations complement written and numeric information, and how teachers can promote the thoughtful reflection and discussion of these representations in small-group and whole-class settings.
The project has had three major areas of focus: (1) Offering professional development to help elementary and 6th grade teachers become more responsive teachers, attending and responding to their students' ideas and reasoning; (2) Developing web-based resources (both curriculum and case studies) to promote responsive teaching in science; and (3) research how both teachers and students progress in their ability to engage in science inquiry.
UNCG and NCSU are developing instructional resources for grades-2–5 students that infuse cutting-edge content from the emerging field of biomusic into standards-based elementary science and music curricula. The approach uses the musical sounds of nature to help students learn concepts in biology, physical science, and anthropology. Curriculum is undergoing beta-testing across North Carolina in diverse school settings.
This project’s overarching goal is to evaluate the assessment components embedded within two NSF-supported mathematics curricula: Everyday Mathematics and Math Trailblazers. The investigators will apply a comprehensive validity perspective that integrates a variety of empirical evidence regarding the cognitive, psychometric, and instructional affordances of multiple assessments embedded in these curricula as part of their overall instructional design.
This project creates materials for grades 5-8 that address and assess STEM concepts through a robotics curriculum. The curriculum addresses STEM standards through such documents as the NCTM Focal Points and the Atlas of Science Literacy. Students can use the TekBot robotics platform in three problem-based ways: building, moving, and programming. The intent is to scale up to a cyber-infrastructure that supports the national distribution and implementation of the curriculum.
This exploratory project aims to develop a community of individuals and organizations working together to address critical issues in K-12 computer science education by broadening the awareness of the need for curriculum computer science standards, providing multiple levels of professional development, conducting and disseminating research in computer science education, and promoting this subject as a unique field of study in schools.
This project engages children in classrooms across the country in an authentic investigation of Devonian fossils. Goals include supporting children in the use of evidence in constructing explanations of natural phenomena, and motivating culturally and linguistically diverse groups of children to engage in learning science. Deliverables include development and testing of an interactive website where children learn how to identify the fossils they find and add their own data to an emerging database.
This project supports five graduate students with backgrounds in the natural and learning sciences as they achieve masters-level expertise in a science discipline and pursue coursework and complete dissertations in science education research. The program prepares them to 1) collaborate with educational and developmental psychologists and discipline-based science education researchers, and 2) to develop and teach courses that break down the traditional barriers between science teaching methods courses and science content courses for teachers.
The goal of this conference was to bring together classroom teachers, mathematics educators, mathematicians, and community college faculty to consider critical questions about content and pedagogy in the mathematics education of K-8 teachers. These discussions were grounded by co-teaching actual professional development sessions, through observing each other teaching, and through debriefing teaching sessions based on observations and videotape. The participants developed an emerging set of principles and approaches to professional development for K-8 teachers.
The goal of these two linked conferences was to build more effective connections between research and practice. Specifically, the conferences brought together researchers, practitioners. and policy makers around improving students' mathematics proficiency by ensuring that researchers were investigating the most urgent problems of practice and that practitioners were connected to the research in ways that makes the knowledge useful to instruction.
This grant explores the timely issue of how to conduct a feasibility study on the question of whether youths who participate in after-school IT-oriented science-engagement programs are more likely to eventually choose a STEM-related career. This project examines programs such as Information Technology Experiences for Students and Teachers (ITEST) along with other similar programs to determine innovative approaches to conducting such a long-term study so that it is methodologically sound and as economical as possible.
EDC is developing a high school capstone course in linear algebra. Student resources contain a core semester that develops two- and three-dimensional geometry using vectors and that treats matrix algebra and its applications to geometry; a semester of material that completes a typical undergraduate course (exploring bases, determinants and eigentheory); and 5 stand-alone modules that develop applications of this core to mathematics, engineering, science, and other STEM fields.
This project’s researchers are determining individual teacher effect estimates and investigating their stability across models. This study also investigates the instructional practices of a subsample of 30 highly effective and 30 less effective sixth-grade mathematics teachers using videotaped classroom lessons, which are coded and analyzed by researchers who are blind to the value-added effectiveness of the teachers.
The study includes two and a half years of preparation and support for all the mathematics instructional leaders (ILs) within a large urban school district with a substantial minority student enrollment. These ILs will implement the Problem-Solving Cycle model with the mathematics teachers in their schools. Researchers will analyze the preparation and support that ILs need, the quality of their implementation, and the impact of the PD process on ILs, teachers, and students.
This project is developing, piloting, and implementing online professional development in support of inquiry, focusing on facilitation of student research. The goal is to determine what types of Web-based experiences and resources most effectively support middle school teachers in overcoming the substantial hurdles inherent in enabling students to design and conduct their own scientific experiments. The project creates and tests a series of Web-based professional development experiences for 7th and 8th grade teachers.
The Coaching Cycle project is creating an online course for K–8 mathematics instructional coaches. The project targets coaches in rural areas and small schools who do not have access to regular district-wide professional development. It provides training in the skills needed for effective instructional coaching in mathematics by using artifacts collected by practicing coaches to engage course participants in the practice of coaching skills.