This project seeks to better understand how teachers' capacity and willingness to customize instructional approaches to meet standards and the needs of diverse student populations develops through initial practice and successive enactments of curriculum materials. This work will address current gaps in the literature and contribute to an overall understanding of how teachers develop the capacity to use curricula in ways that advance the goal of equitable science instruction.
Projects
This project builds capacity for middle school teachers to enact and adapt integrated STEM curriculum units with their students. The units will focus on biomimicry—examining structures and functions found in nature and applying these to solve human problems, which combines science, engineering, and technology. The project enables teachers to design activities that are personally authentic to their students by supporting teachers to examine their students' assets, needs, and interests and center these during unit design.
The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciences—the relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.
The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciences—the relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.
This project will develop a standards-aligned engineering professional learning model for elementary teachers of multilingual learners. This interdisciplinary approach is innovative in its effort to provide teachers with sustained time to reflect on what they believe about language, their teaching of linguistically and racially minoritized students, and their interactions with multilingual students around engineering content. Using a participatory and collaborative approach, experts in literacy, language, and engineering will work with elementary teachers to develop strategies for how teachers can view students’ multilingualism as an asset to engineering.
EarthX is a design-based research project that supports the integration of Earth science into high school biology, chemistry, and physics courses in Baltimore City Public Schools, while also supporting the district’s transition to three-dimensional (3D), ambitious and equitable science teaching aligned with the Next Generation Science Standards (NGSS). EarthX builds on the success of the Integrating Chemistry and Earth Science (ICE) DRK-12 project, which developed innovative chemistry course curriculum materials and PD strategies, to support Earth science integration into biology and physics course curriculum development and 3D teaching. EarthX will develop, test, and refine embedded and unit assessments for all three courses, along with providing an online system for assessment administration; real-time reporting to teachers and students; and provision of data to PD leaders, administrators, and researchers for multiple purposes. Assessments will be 3D, featuring core concepts from both Earth science and the course discipline combined with a science or engineering practice and a crosscutting concept.
This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.
The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models. This project will address the gap by studying student learning with different types of models and will use these findings to develop and study new curriculum materials that incorporate multiple models for teaching about viral epidemics in high school biology classes.
The Common Core State Standards for Mathematics (CCSSM) problem-solving measures assess students’ problem-solving performance within the context of CCSSM math content and practices. This project expands the scope of the problem-solving measures use and score interpretation. The project work advances mathematical problem-solving assessments into computer adaptive testing. Computer adaptive testing allows for more precise and efficient targeting of student ability compared to static tests.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.
In COVID Connects Us, the project team investigates the challenges of learning how to support justice-centered ambitious science teaching (JuST). The project team will partner with networks of secondary science teachers as they first implement a common unit aimed at engaging youth in science and engineering practices in ways that are culturally sustaining, focused on explanation-construction and intentionally anti-oppressive. The teachers will then use their shared experiences to revise future instruction in ways that are justice-centered and that engage students in the ways research suggests is important for their learning.
This project will investigate how NGSS has been implemented in California schools during the ongoing COVID-19 pandemic. Through a state-wide survey, analysis of administrative data, interviews and case studies, this project will assess the impact of COVID-19 on NGSS implementation on a large scale, and more importantly, the extent to which high minority, high-poverty districts are disproportionately affected. It will also identify policy options available to state and school districts. By collecting critical and timely data, this project will contribute new knowledge to understanding of the impact of COVID-19 on NGSS implementation.
This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.
This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.
To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena. In-person and virtual professional learning experiences will further help teachers who have limited district support for science to incorporate place-based approaches. Participating teachers will range from rural and urban settings in California, Colorado, and Maine to ensure the end products of this project are relevant, scalable, appropriate for a wide range of students across the country.
This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).
The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.
This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.
The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades. Specific goals of the effort will be: (1) to iteratively develop and refine a design approach that enables assessment designers to develop Next Generation Science Standards (NGSS)-aligned tasks and rubrics that include a literacy component for the early grades; (2) to use this design approach to create two exemplar assessment tasks that are feasible for classroom use; and (3) to collect initial evidence that informs the promise of the design approach.
The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades. Specific goals of the effort will be: (1) to iteratively develop and refine a design approach that enables assessment designers to develop Next Generation Science Standards (NGSS)-aligned tasks and rubrics that include a literacy component for the early grades; (2) to use this design approach to create two exemplar assessment tasks that are feasible for classroom use; and (3) to collect initial evidence that informs the promise of the design approach.
The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades. Specific goals of the effort will be: (1) to iteratively develop and refine a design approach that enables assessment designers to develop Next Generation Science Standards (NGSS)-aligned tasks and rubrics that include a literacy component for the early grades; (2) to use this design approach to create two exemplar assessment tasks that are feasible for classroom use; and (3) to collect initial evidence that informs the promise of the design approach.