Teacher Attitudes/Beliefs

Pedagogical Chemistry Sensemaking: A Novel Conceptual Framework to Facilitate Pedagogical Sensemaking in Model-based Lesson Planning

Researchers have typically identified and characterized teachers’ knowledge bases (e.g., pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases.

Author/Presenter

Meng-Yang M. Wu

Ellen J. Yezierski

Lead Organization(s)
Year
2022
Short Description

Researchers have typically identified and characterized teachers’ knowledge bases (e.g., pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases. However, lesson planning (defined as the transformation of subject matter knowledge to enacted pedagogical content knowledge) remains underexplored despite its central position in the RCM. We aim to address this gap by developing a conceptual framework known as Pedagogical Chemistry Sensemaking (PedChemSense).

Making Sense of Sensemaking: Understanding How K–12 Teachers and Coaches React to Visual Analytics

With the spread of learning analytics (LA) dashboards in K-12 schools, educators are increasingly expected to make sense of data to inform instruction. However, numerous features of school settings, such as specialized vantage points of educators, may lead to different ways of looking at data. This observation motivates the need to carefully observe and account for the ways data sensemaking occurs, and how it may differ across K-12 professional roles.

Author/Presenter

Fabio C. Campos

June Ahn

Daniela K. DiGiacomo

Ha Nguyen

Maria Hays

Year
2021
Short Description

With the spread of learning analytics (LA) dashboards in K-12 schools, educators are increasingly expected to make sense of data to inform instruction. However, numerous features of school settings, such as specialized vantage points of educators, may lead to different ways of looking at data. This observation motivates the need to carefully observe and account for the ways data sensemaking occurs, and how it may differ across K-12 professional roles. Our mixed-methods study reports on interviews and think-aloud sessions with middle-school mathematics teachers and instructional coaches from four districts in the United States.

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.