Pre-K

Classroom-Based STEM Assessment: Contemporary Issues and Perspectives

Image
Author/Presenter

Christopher J. Harris, Eric Wiebe, Shuchi Grover, James W. Pellegrino, Eric Banilower, Arthur Baroody, Erin Furtak, Ryan “Seth” Jones, Leanne R. Ketterlin-Geller, Okhee Lee, Xiaoming Zhai

Year
2023
Short Description

This report takes stock of what we currently know as well as what we need to know to make classroom assessment maximally beneficial for the teaching and learning of STEM subject matter in K–12 classrooms.

Opportunities for Research within the Data Science Education Community

This webinar provided early career data science education researchers with information on the state of the field; tools, curricula, and other resources for researchers; and insight into funding opportunities and proposal development. Participants explore topics, research interests, and problems of practice in more depth in breakout rooms with session leaders.

Author/Presenter

Katherine Miller, Chad Dorsey, The Concord Consortium; Kirsten Daehler, Leti Perez, WestEd; Kayla DesPortes, New York University; Nicholas Horton, Amherst College; Seth Jones, Middle Tennessee State University; Josephine Louie, Education Development Center; Josh Rosenberg, University of Tennessee, Knoxville; David Weintrop, University of Maryland

Lead Organization(s)
Year
2023
Short Description

This webinar provided early career data science education researchers with information on the state of the field; tools, curricula, and other resources for researchers; and insight into funding opportunities and proposal development. Participants explore topics, research interests, and problems of practice in more depth in breakout rooms with session leaders.

Improving Prekindergarten and Elementary Science Teaching: A Synthesis of Recent DRK-12 Program Investment in This Field

This review synthesized insights from 25 NSF DRK-12 projects that studied prekindergarten (PreK) and elementary science teaching. This review covered 25 of the 27 projects funded between 2011 and 2015. We synthesized the empirical findings from interventions in four common areas: preservice PreK and elementary preparation programs, in-service teacher professional development, instructional materials for PreK and elementary teachers, and strategies for diverse learners. Many of these projects studied interventions in more than one of the common areas.

Author/Presenter

Danielle Ferguson

Isabella Pinerua

Dean Gerdeman

Year
2022
Short Description

This review synthesized insights from 25 NSF DRK-12 projects that studied prekindergarten (PreK) and elementary science teaching. This review covered 25 of the 27 projects funded between 2011 and 2015. We synthesized the empirical findings from interventions in four common areas: preservice PreK and elementary preparation programs, in-service teacher professional development, instructional materials for PreK and elementary teachers, and strategies for diverse learners. Many of these projects studied interventions in more than one of the common areas. Researchers found that DRK-12 projects showed promise in increasing preservice and in-service teachers’ self-efficacy and pedagogical content knowledge and students’ science content knowledge.

The Development and Assessment of Counting-based Cardinal Number Concepts

The give-n task is widely used in developmental psychology to indicate young children’s knowledge or use of the cardinality principle (CP): the last number word used in the counting process indicates the total number of items in a collection. Fuson (1988) distinguished between the CP, which she called the count-cardinal concept, and the cardinal-count concept, which she argued is a more advanced cardinality concept that underlies the counting-out process required by the give-n task with larger numbers.

Author/Presenter

Arthur J. Baroody

Menglung Lai

Year
2022
Short Description

The give-n task is widely used in developmental psychology to indicate young children’s knowledge or use of the cardinality principle (CP): the last number word used in the counting process indicates the total number of items in a collection. Fuson (1988) distinguished between the CP, which she called the count-cardinal concept, and the cardinal-count concept, which she argued is a more advanced cardinality concept that underlies the counting-out process required by the give-n task with larger numbers. One aim of the present research was to evaluate Fuson’s disputed hypothesis that these two cardinality concepts are distinct and that the count-cardinal concept serves as a developmental prerequisite for constructing the cardinal-count concept. Consistent with Fuson’s hypothesis, the present study with twenty-four 3- and 4-year-olds revealed that success on a battery of tests assessing understanding of the count-cardinal concept was significantly and substantially better than that on the give-n task, which she presumed assessed the cardinal-count concept.

Teachers’ Pedagogical Content Knowledge in Mathematics and Science A Cross-Disciplinary Synthesis of Recent DRK-12 Projects

This review synthesized insights from 27 NSF-funded projects, totaling $62 million, that studied pedagogical content knowledge (PCK) in STEM education from prekindergarten (PreK) to Grade 12, split roughly equally across mathematics and science education. The projects primarily applied correlational/observational and longitudinal methods, often targeted teaching in the middle school grades, and used a wide variety of approaches to measure teachers’ PCK.

Author/Presenter

David Miller

Isabella Pinerua

Jonathan Margolin

Dean Gerdeman

Year
2022
Short Description

This review synthesized insights from 27 NSF-funded projects, totaling $62 million, that studied pedagogical content knowledge (PCK) in STEM education from prekindergarten (PreK) to Grade 12, split roughly equally across mathematics and science education. The projects primarily applied correlational/observational and longitudinal methods, often targeted teaching in the middle school grades, and used a wide variety of approaches to measure teachers’ PCK. The projects advanced substantive knowledge about PCK across four major lines of research, especially regarding the measurement and development of PCK.

Modeling in Science Education: A Synthesis of Recent Discovery Research PreK-12 Projects

This review synthesizes findings from 18 NSF-funded projects, totaling nearly $22 million, that studied scientific modeling in science education from prekindergarten to Grade 12. The projects typically used descriptive designs to understand digital and nondigital modeling resources that help students explore scientific phenomena. Further, the projects provide initial evidence that resources supporting student modeling, such as modeling platforms and computer simulations, can promote science learning.

Key Findings

Author/Presenter

Jonathan Margolin

Isabella Pinerua

Dean Gerdeman

Year
2022
Short Description

This review synthesizes findings from 18 NSF-funded projects, totaling nearly $22 million, that studied scientific modeling in science education from prekindergarten to Grade 12. The projects typically used descriptive designs to understand digital and nondigital modeling resources that help students explore scientific phenomena. Further, the projects provide initial evidence that resources supporting student modeling, such as modeling platforms and computer simulations, can promote science learning.

Mathematical and Scientific Argumentation in PreK-12: A Cross-Disciplinary Synthesis of Recent DRK-12 Projects

This review synthesizes insights from 23 NSF-funded projects, totaling $40 million, that studied mathematical and scientific argumentation in STEM education from prekindergarten (PreK) to Grade 12. The projects reported on both studies of argumentation interventions and naturalistic observations in “business-as-usual” settings. The projects advanced substantive knowledge about how to support student argumentation.

Author/Presenter

Eben Witherspoon

David Miller

Isabella Pinerua

Dean Gerdeman

Year
2022
Short Description

This review synthesizes insights from 23 NSF-funded projects, totaling $40 million, that studied mathematical and scientific argumentation in STEM education from prekindergarten (PreK) to Grade 12. The projects reported on both studies of argumentation interventions and naturalistic observations in “business-as-usual” settings. The projects advanced substantive knowledge about how to support student argumentation. In particular, the projects highlighted the importance of making an argument’s structure explicit and facilitating student-to-student discourse, especially with technological tools.

From Professional Development to Native Nation Building: Opening Up Space for Leadership, Relationality, and Self-Determination through the Diné Institute for Navajo Nation Educators

Many of us have multiple stories that would be appropriate to tell given the theme of this Special Issue. I am compelled to tell a story about my work with teachers, teacher leaders, and other allies on the Navajo Nation. The Diné Institute for Navajo Nation Educators (DINÉ) was started by teacher leaders who envisioned a collaborative professional development institute specifically for K12 teachers on the Navajo Nation.
Author/Presenter

Angelina E. Castagno

Lead Organization(s)
Year
2021
Short Description

Many of us have multiple stories that would be appropriate to tell given the theme of this Special Issue. I am compelled to tell a story about my work with teachers, teacher leaders, and other allies on the Navajo Nation. The Diné Institute for Navajo Nation Educators (DINÉ) was started by teacher leaders who envisioned a collaborative professional development institute specifically for K12 teachers on the Navajo Nation. In their rural, Indigenous-serving schools, teachers are often asked to deliver scripted curriculum that is decontextualized, dehistoricized, and therefore, dehumanizing for their students, themselves, and their communities. Their vision for the DINÉ was developed and honed over many years in response to this context. In this essay, I will briefly describe the DINÉ, how and why it began, and its current status. I will focus on three critical spaces that have opened up in and through the DINÉ: teacher leadership, connection/relationality, and activism/self-determination. In reflecting on these three spaces, I suggest that our work in the DINÉ is fundamentally about Native Nation building.

Developing and Piloting a Tool to Assess Culturally Responsive Principles in Schools Serving Indigenous Students

This article presents a tool and discusses the rationale for the authors’ development of a tool designed to assess the alignment of culturally responsive schooling principles within schools serving predominantly U.S. Indigenous students.
Author/Presenter

Angelina Castagno

Darold H. Joseph

Hosava Kretzmann

Pradeep M. Dass

Lead Organization(s)
Year
2021
Short Description

This article presents a tool and discusses the rationale for the authors’ development of a tool designed to assess the alignment of culturally responsive schooling principles within schools serving predominantly U.S. Indigenous students. Schools that serve a majority of Indigenous students are generally located on or bordering Native Nations that are federally recognized as being sovereign Nations with a government-to-government relationship to the federal government, so the more generic diversity, equity, and inclusion tools that currently exist are insufficient for the unique contexts of schools in Indian Country. Thus, we offer a tool that can be used to identify and strengthen the integration of culturally responsive principles specifically for, with, and in Indigenous-serving schools.

Resource(s)

Young Mathematicians Math Games

Fun and easy to use math games designed for children ages 3 to 6-years-old. Some games are quick and use everyday materials; others use a game board for more extended play. All of the games can be played multiple times and their difficulty can be increased or decreased to target a “just right” level of challenge for children as they gain proficiency.

Author/Presenter

The YM Team

Year
2021
Short Description

Fun and easy to use math games designed for children ages 3 to 6-years-old. Some games are quick and use everyday materials; others use a game board for more extended play. All of the games can be played multiple times and their difficulty can be increased or decreased to target a “just right” level of challenge for children as they gain proficiency.