Middle

Does student-centered instruction engage students differently? The moderation effect of student ethnicity

Student-centered instruction is featured in reforms that aim to improve excellence and equity in mathematics education. Although research on stereotype threat suggests that student-centered instruction may have differential effects on racial minority students, the relationship between student-centered mathematics instruction and student engagement remains understudied.

Author/Presenter

Eli Talbert

Tara Hofkens

Ming-Te Wang

Lead Organization(s)
Year
2018
Short Description

This study examined the relationship between student-centered mathematics instruction and adolescents’ behavioral, cognitive, emotional, and social engagement in mathematics and whether the relationship differed by ethnicity.

Beyond Classroom Academics: A School-Wide and Multi-Contextual Perspective on Student Engagement in School

School engagement researchers have historically focused on academic engagement or academic-related activities. Although academic engagement is vital to adolescents’ educational success, school is a complex developmental context in which adolescents also engage in social interactions while exploring their interests and developing competencies. In this article, school engagement is re-conceptualized as a multi-contextual construct that includes both academic and social contexts of school.

Author/Presenter

Ming-Te Wang

Tara L. Hofkens

Lead Organization(s)
Year
2019
Short Description

A school-wide and multi-contextual perspective on student engagement in school.

Webinar: Evidence Standards for Evaluating Math and Science Programs

What are evidence standards for evaluating math and science programs? Watch this webinar recording with experts from the American Institutes for Research (AIR) for an engaging webinar about evidence standards. Presenters discussed the Every Student Succeeds Act (ESSA) Tiers of Evidence and the What Works Clearinghouse (WWC) evidence rating system and how these evidence standards relate to evaluating math and science programs. The presenters discussed how participants can use these resources to strengthen their existing and proposed study designs.

Author/Presenter

Lyzz Davis, Senior Researcher, American Institutes for Research

Joe Taylor, Principal Researcher, American Institutes for Research

Year
2019
Short Description

Watch this webinar recording with experts from the American Institutes for Research (AIR) for an engaging webinar about evidence standards.

The Computational Algorithmic Thinking (CAT) Capability Flow: An Approach to Articulating CAT Capabilities over Time in African-American Middle-school Girls

Computational algorithmic thinking (CAT) is the ability to design, implement, and assess the implementation of algorithms to solve a range of problems. It involves identifying and understanding a problem, articulating an algorithm or set of algorithms in the form of a solution to the problem, implementing that solution in such a way that the solution solves the problem, and evaluating the solution based on some set of criteria.

Author/Presenter

Jakita Thomas

Lead Organization(s)
Year
2018
Short Description

This paper explores the CAT Capability Flow, which begins to describe the processes and sub-skills and capabilities involve in computational algorithmic thinking (CAT). To do this, authors engage in an approach which results in an initial flowchart that depicts the processes students are engaging in as an iteratively-refined articulation of the steps involved in computational algorithmic thinking.

Exploring African American Middle-School Girls' Perceptions of Themselves as Game Designers

Computational algorithmic thinking (CAT) is the ability to design, implement, and assess the implementation of algorithms to solve a range of problems. Supporting Computational Algorithmic Thinking (SCAT) is a longitudinal project that explores the development of CAT capabilities by guiding African American middle-school girls through the iterative game design cycle, resulting in a set of complex games around broad themes.

Author/Presenter

Jakita O. Thomas

Rachelle Minor

O. Carlette Odemwingie

Lead Organization(s)
Year
2017
Short Description

This paper explores African American middle-school girls' perspectives of their experience with the Supporting Computational Algorithmic Thinking (SCAT) project and perceptions of themselves as game designers.

Exploring the Difficulties African-American Middle School Girls Face Enacting Computational Algorithmic Thinking over three Years while Designing Games for Social Change

Computational algorithmic thinking (CAT) is the ability to design, implement, and assess the implementation of algorithms to solve a range of problems. It involves identifying and understanding a problem, articulating an algorithm or set of algorithms in the form of a solution to the problem, implementing that solution in such a way that the solution solves the problem, and evaluating the solution based on some set of criteria.

Author/Presenter

Jakita O. Thomas

Yolanda Rankin

Rachelle Minor

Li Sun

Lead Organization(s)
Year
2017
Short Description

This article explores middle school girls' reflections about the difficulties they faced while using computational algorithmic thinking capabilities as they engaged in collaborative game design for social change. Authors focus on how these difficulties changed over the course of three years as well as new difficulties that emerged from year to year as girls become more expert game designers and computational algorithmic thinkers.

Understanding the Difficulties African-American Middle School Girls Face While Enacting Computational Algorithmic Thinking in the Context of Game Design

Computational algorithmic thinking (CAT) is the ability to design, implement, and assess the implementation of algorithms to solve a range of problems. It involves identifying and understanding a problem, articulating an algorithm or set of algorithms in the form of a solution to the problem, implementing that solution in such a way that it solves the problem, and evaluating the solution based on some set of criteria. CAT has roots in Mathematics, through problem solving and algorithmic thinking. CAT lies at the heart of Computer Science, which is defined as the study of algorithms.

Author/Presenter

Jakita O. Thomas

O. Carlette Odemwingie

Quimeka Saunders

Malika Watlerd

Lead Organization(s)
Year
2015
Short Description

This article introduces CAT as explored through the Supporting Computational Algorithmic Thinking (SCAT) project, an ongoing longitudinal between-subjects research project and enrichment program that guides African-American middle school girls (SCAT Scholars) through the iterative game design cycle resulting in a set of complex games around broad themes.

Opportunities to Participate (OtP) in Science: Examining Differences Longitudinally and Across Socioeconomically Diverse Schools

The purpose of this study was to develop and validate a survey of opportunities to participate (OtP) in science that will allow educators and researchers to closely approximate the types of learning opportunities students have in science classrooms. Additionally, we examined whether and how opportunity gaps in science learning may exist across schools with different socioeconomic levels. The OtP in science survey consists of four dimensions that include acquiring foundational knowledge, planning an investigation, conducting an investigation, and using evidence to communicate findings.

Author/Presenter

Christine L. Bae

Morgan DeBusk-Lane

Kathryn N. Hayes

Fa Zhang

Year
2018
Short Description

The purpose of this study was to develop and validate a survey of opportunities to participate (OtP) in science that will allow educators and researchers to closely approximate the types of learning opportunities students have in science classrooms.

Thinking Scientifically in a Changing World

Shifting people’s judgments toward the scientific involves teaching them to purposefully evaluate connections between evidence and alternative explanations.

Lombardi, D. (2019). Thinking scientifically in a changing world. Science Brief: Psychological Science Agenda, 33(1). Retrieved from https://www.apa.org/science/about/psa/2019/01/changing-world.aspx

Author/Presenter

Doug Lombardi

Lead Organization(s)
Year
2019
Short Description

Shifting people’s judgments toward the scientific involves teaching them to purposefully evaluate connections between evidence and alternative explanations.

Teachers' framing of argumentation goals: Working together to develop individual versus communal understanding

For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation.

Author/Presenter

María González‐Howard

Katherine L. McNeill

Lead Organization(s)
Year
2019
Short Description

This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Authors use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation.