Curriculum

Culturally Responsive Mathematics Engagement Through a Family-Inspired Mathematizing Routine

There is a need for research on effective classroom strategies available for teachers that promote equitable school-family collaborations. Such effective strategies are needed in general but also specifically in the area of content, skill acquisition, and positive dispositions in early mathematics. This exploratory qualitative study looked at a mathematical routine, focused on family-provided photos and artifacts, that elicited children’s mathematical and general observations and inquiries and engaged families in mathematical communications.

Author/Presenter

Jennifer M. Suh

Stephanie C. Calabrese

Lead Organization(s)
Year
2025
Short Description

There is a need for research on effective classroom strategies available for teachers that promote equitable school-family collaborations. Such effective strategies are needed in general but also specifically in the area of content, skill acquisition, and positive dispositions in early mathematics. This exploratory qualitative study looked at a mathematical routine, focused on family-provided photos and artifacts, that elicited children’s mathematical and general observations and inquiries and engaged families in mathematical communications.

Co-designing Citizen Science Projects for Elementary Schools in New Hampshire Through Teacher and Community-based Extension Science Volunteer Partnerships

In the United States, reforms put forth by Next Generation Science Standards have increased the demand for K-12 teacher professional development in science instruction. This study investigates a new professional development model, entitled Schoolyard SITES, that partners elementary teachers with University of New Hampshire Cooperative Extension science volunteers to create a community-based partnership that improves teachers' understanding of NGSS-aligned instruction.

Author/Presenter

Lara M. Gengarelly

Sameer V. Honwad

Megan E. Glenn

Erik A. Froburg

Malin E. Clyde

Haley A. Andreozzi

Lead Organization(s)
Year
2025
Short Description

In the United States, reforms put forth by Next Generation Science Standards have increased the demand for K-12 teacher professional development in science instruction. This study investigates a new professional development model, entitled Schoolyard SITES, that partners elementary teachers with University of New Hampshire Cooperative Extension science volunteers to create a community-based partnership that improves teachers' understanding of NGSS-aligned instruction.

Textbooks as a Resource for Teaching Mathematics Through Problem Posing: Catalyzing Instructional Change

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource.

Author/Presenter

Stephen Hwang

Jaepil Han

Faith Muirhead

Amy Brown

Matthew Melville

Jinfa Cai

Lead Organization(s)
Year
2025
Short Description

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource. In this paper, we describe how teachers in the P-PBL Project have engaged in instructional change with support from researchers around a high-quality middle school mathematics textbook series.

Restructuring the Science Curriculum Around Grand Challenges

Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes.

Author/Presenter

Troy D. Sadler

Zhen Xu

David Fortus

Year
2025
Short Description

Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes.

Learning Science and Engineering by Designing Sustainable Houses

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Author/Presenter

Elena Sereiviene

Xiaotong Ding

Rundong Jiang

Dylan Bulseco

Charles Xie

Year
2025
Short Description

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Learning Science and Engineering by Designing Sustainable Houses

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Author/Presenter

Elena Sereiviene

Xiaotong Ding

Rundong Jiang

Dylan Bulseco

Charles Xie

Year
2025
Short Description

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Exploring Middle School Science Teachers’ Curriculum Sensemaking

A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay.

Author/Presenter

Gary Wright

Laura Zangori

Suzanne Otto

Rebekah Snyder

Laura Cole

Lead Organization(s)
Year
2025
Short Description

A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay. In this qualitative embedded case study, we investigated how four middle school science teachers within the same school district used their internal resources to make sense of external factors when enacting new NGSS-aligned place-based curriculum materials.

“Adapting for a Local Space Can be Tricky”: Designing Units for Teachers to Localize Through Phenomenon Adaptation

Learning science in the context of local phenomena and problems can be powerful for young people. Yet, designing place-based instructional materials is resource intensive, limiting broad access. This study investigates how instructional materials designed for widespread use can support teacher localization through phenomenon adaptation, whereby teachers add or swap phenomena relevant to students' interests, identities, and community.

Author/Presenter

Emily M. Harris

Lindsey Mohan

Adrienne A. Hanson

Katahdin A. Cook Whitt

Candice Guy-Gaytán

Lisa O. Kenyon

Year
2025
Short Description

Learning science in the context of local phenomena and problems can be powerful for young people. Yet, designing place-based instructional materials is resource intensive, limiting broad access. This study investigates how instructional materials designed for widespread use can support teacher localization through phenomenon adaptation, whereby teachers add or swap phenomena relevant to students' interests, identities, and community.

Implementing Grand Challenges: A Case Study of Implementing Innovative Curricula

In response to the growing emphasis on addressing global socio-scientific issues like climate change and viral pandemics in K-12 education, we designed three socio-scientific units for middle school science. We call this curriculum Grand Challenges (GC). The GC curriculum shifts from traditional methods to a focus on socio-scientific issues that resonate locally and globally and prepare students for future complexities.

Author/Presenter

Rebecca R. Lesnefsky

Troy D. Sadler

David Fortus

Year
2025
Short Description

In response to the growing emphasis on addressing global socio-scientific issues like climate change and viral pandemics in K-12 education, we designed three socio-scientific units for middle school science. We call this curriculum Grand Challenges (GC). The GC curriculum shifts from traditional methods to a focus on socio-scientific issues that resonate locally and globally and prepare students for future complexities. This study explores the implementation of the GC curriculum by two teachers, highlighting their choices and the impact on instruction.

Facilitating Student Argumentation Around Socioscientific Issues Through Productive Discourse and Negotiation Toward Consensus

Controversial topics that arise in science classrooms, especially those of social relevance (e.g., the climate crisis), provide opportunities to help students learn about and discuss contradictory ideas they may encounter in their everyday experiences. Such topics may also be challenging to teach, but scaffolding may facilitate effective instruction. We describe one type of instructional scaffolding, the Model-Evidence Link (MEL) activity, that supports students’ reasoning when evaluating connections between lines of evidence and competing explanations about phenomena.

Author/Presenter

Donna Governor

Carla McAuliffe

Lorraine Ramirez Villarin

Timothy G. Klavon

Julianne E. van Meerten

Drea Rachel

Sanlyn Buxner

Janelle M. Bailey

Doug Lombardi

Lead Organization(s)
Year
2025
Short Description

Controversial topics that arise in science classrooms, especially those of social relevance (e.g., the climate crisis), provide opportunities to help students learn about and discuss contradictory ideas they may encounter in their everyday experiences. Such topics may also be challenging to teach, but scaffolding may facilitate effective instruction. We describe one type of instructional scaffolding, the Model-Evidence Link (MEL) activity, that supports students’ reasoning when evaluating connections between lines of evidence and competing explanations about phenomena.