Technology

Classroom-Based STEM Assessment: Contemporary Issues and Perspectives

Image
Author/Presenter

Christopher J. Harris, Eric Wiebe, Shuchi Grover, James W. Pellegrino, Eric Banilower, Arthur Baroody, Erin Furtak, Ryan “Seth” Jones, Leanne R. Ketterlin-Geller, Okhee Lee, Xiaoming Zhai

Year
2023
Short Description

This report takes stock of what we currently know as well as what we need to know to make classroom assessment maximally beneficial for the teaching and learning of STEM subject matter in K–12 classrooms.

Myths, Mis- and Preconceptions of Artificial Intelligence: A Review of the Literature

Artificial Intelligence (AI) is prevalent in nearly every aspect of our lives. However, recent studies have found a significant amount of confusion and misunderstanding surrounding AI. To develop effective educational programs in the field of AI, it is vital to examine and understand learners' pre- and misconceptions as well as myths about AI. This study examined a corpus of 591 studies.

Author/Presenter

Arne Bewersdorff

Xiaoming Zhai

Jessica Roberts

Claudia Nerdel

Lead Organization(s)
Year
2023
Short Description

Artificial Intelligence (AI) is prevalent in nearly every aspect of our lives. However, recent studies have found a significant amount of confusion and misunderstanding surrounding AI. To develop effective educational programs in the field of AI, it is vital to examine and understand learners' pre- and misconceptions as well as myths about AI. This study examined a corpus of 591 studies.

ChatGPT for Next Generation Science Learning

This article pilots ChatGPT in tackling the most challenging part of science learning and found it successful in automation of assessment development, grading, learning guidance, and recommendation of learning materials.

Zhai, X. (2023). ChatGPT for Next Generation Science Learning | XRDS: Crossroads, 29(3), 42-46. https://doi.org/10.1145/3589649

Author/Presenter
Xiaoming Zhai
Lead Organization(s)
Year
2023
Short Description

This article pilots ChatGPT in tackling the most challenging part of science learning and found it successful in automation of assessment development, grading, learning guidance, and recommendation of learning materials.

Opportunities for Research within the Data Science Education Community

This webinar provided early career data science education researchers with information on the state of the field; tools, curricula, and other resources for researchers; and insight into funding opportunities and proposal development. Participants explore topics, research interests, and problems of practice in more depth in breakout rooms with session leaders.

Author/Presenter

Katherine Miller, Chad Dorsey, The Concord Consortium; Kirsten Daehler, Leti Perez, WestEd; Kayla DesPortes, New York University; Nicholas Horton, Amherst College; Seth Jones, Middle Tennessee State University; Josephine Louie, Education Development Center; Josh Rosenberg, University of Tennessee, Knoxville; David Weintrop, University of Maryland

Lead Organization(s)
Year
2023
Short Description

This webinar provided early career data science education researchers with information on the state of the field; tools, curricula, and other resources for researchers; and insight into funding opportunities and proposal development. Participants explore topics, research interests, and problems of practice in more depth in breakout rooms with session leaders.

MindHive: An Online Citizen Science Tool and Curriculum for Human Brain and Behavior Research

MindHive is an online, open science, citizen science platform co-designed by a team of educational researchers, teachers, cognitive and social scientists, UX researchers, community organizers, and software developers to support real-world brain and behavior research for (a) high school students and teachers who seek authentic STEM research experiences, (b) neuroscientists and cognitive/social psychologists who seek to address their research questions outside of the lab, and (c) community-based organizations who seek to conduct grassroots, science-based research for policy change.

Author/Presenter

Suzanne Dikker

Yury Shevchenko

Kim Burgas

Kim Chaloner

Marc Sole

Lucy Yetman-Michaelson

Ido Davidesco

Rebecca Martin

Camillia Matuk

Lead Organization(s)
Year
2022
Short Description

MindHive is an online, open science, citizen science platform co-designed by a team of educational researchers, teachers, cognitive and social scientists, UX researchers, community organizers, and software developers to support real-world brain and behavior research for (a) high school students and teachers who seek authentic STEM research experiences, (b) neuroscientists and cognitive/social psychologists who seek to address their research questions outside of the lab, and (c) community-based organizations who seek to conduct grassroots, science-based research for policy change.

AI for Tackling STEM Education Challenges

Artificial intelligence (AI), an emerging technology, finds increasing use in STEM education and STEM education research (e.g., Zhai et al., 2020b; Ouyang et al., 2022; Linn et al., 2023). AI, defined as a technology to mimic human cognitive behaviors, holds great potential to address some of the most challenging problems in STEM education (Neumann and Waight, 2020; Zhai, 2021). Amongst these is the challenge of supporting all students to meet the vision for science learning in the 21st century laid out, for example in the U.S.

Author/Presenter

Xiaoming Zhai

Knut Neumann

Joseph Krajcik

Year
2023
Short Description

To best support students in developing competence, assessments that allow students to use knowledge to solve challenging problems and make sense of phenomena are needed. These assessments need to be designed and tested to validly locate students on the learning progression and hence provide feedback to students and teachers about meaningful next steps in their learning. Yet, such tasks are time-consuming to score and challenging to provide students with appropriate feedback to develop their knowledge to the next level.

AI for Tackling STEM Education Challenges

Artificial intelligence (AI), an emerging technology, finds increasing use in STEM education and STEM education research (e.g., Zhai et al., 2020b; Ouyang et al., 2022; Linn et al., 2023). AI, defined as a technology to mimic human cognitive behaviors, holds great potential to address some of the most challenging problems in STEM education (Neumann and Waight, 2020; Zhai, 2021). Amongst these is the challenge of supporting all students to meet the vision for science learning in the 21st century laid out, for example in the U.S.

Author/Presenter

Xiaoming Zhai

Knut Neumann

Joseph Krajcik

Year
2023
Short Description

To best support students in developing competence, assessments that allow students to use knowledge to solve challenging problems and make sense of phenomena are needed. These assessments need to be designed and tested to validly locate students on the learning progression and hence provide feedback to students and teachers about meaningful next steps in their learning. Yet, such tasks are time-consuming to score and challenging to provide students with appropriate feedback to develop their knowledge to the next level.

AI for Tackling STEM Education Challenges

Artificial intelligence (AI), an emerging technology, finds increasing use in STEM education and STEM education research (e.g., Zhai et al., 2020b; Ouyang et al., 2022; Linn et al., 2023). AI, defined as a technology to mimic human cognitive behaviors, holds great potential to address some of the most challenging problems in STEM education (Neumann and Waight, 2020; Zhai, 2021). Amongst these is the challenge of supporting all students to meet the vision for science learning in the 21st century laid out, for example in the U.S.

Author/Presenter

Xiaoming Zhai

Knut Neumann

Joseph Krajcik

Year
2023
Short Description

To best support students in developing competence, assessments that allow students to use knowledge to solve challenging problems and make sense of phenomena are needed. These assessments need to be designed and tested to validly locate students on the learning progression and hence provide feedback to students and teachers about meaningful next steps in their learning. Yet, such tasks are time-consuming to score and challenging to provide students with appropriate feedback to develop their knowledge to the next level.