Cadre-Admin

University of Southern California (USC)
03/01/2021

This study will build upon the team's prior research from early in the pandemic. Researchers will continue to collect data from families and aims to understand parents’ perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the Spring and Summer of 2021 and into the 2021-22 school year.

University of Southern California (USC)
03/15/2022

Building on the team's prior research from early in the pandemic, this project team will continue to collect data from families and aims to understand parents’ perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the spring and summer of 2022 and into the 2022-23 school year. The team will analyze student and family overall and for key demographic groups of interest as schooling during the pandemic continues. This RAPID project allows critically important data to continue to be collected and contribute to continued understanding of the impacts of and responses to the pandemic by American families.

TERC, Inc., University of Wisconsin-Madison (UW-Madison)
10/01/2012

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

University of Wisconsin-Madison (UW-Madison)
10/01/2012

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

Utah State University (USU)
08/15/2010

The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education that for over forty years introduce science, mathematics and engineering to students traditionally underrepresented in the discipline. This project examines the influences MESA activities (field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement) have on students' perception of engineering, their self-efficacy and interest in engineering, and their subsequent decisions to pursue careers in engineering.

North Carolina State University (NCSU)
08/15/2010

The project designs and implements technologies that combine artificial intelligence in the form of intelligent tutoring systems with multimedia interfaces (i.e., an electronic science notebook and virtual labs) to support children in grades 4-5 learning science. The students use LEONARDO's intelligent virtual science notebooks to create and experiment with interactive models of physical phenomena.

Harvard University
12/01/2016

This project proposes an assessment study that focuses on improving existing measures of teachers' Mathematical Knowledge for Teaching (MKT). The research team will update existing measures, adding new items and aligning the instrument to new standards in school mathematics.

Texas A&M Engineering Experiment Station
09/01/2004

This project will develop a Professional Learning Community (PLC) model for engaging science and education researchers from a university with science and mathematics faculty at community colleges to increase the number, quality and diversity of middle school and high school mathematics and science teachers; apply design-based research to assess the effectiveness and replicability of the PLC model; and disseminate replicable project and research findings.

University of Wisconsin-Madison (UW-Madison)
10/01/2012

This research project is an investigation of the role that examples play in helping learners become proficient in proving mathematical conjectures. Researchers are building a framework that characterizes the development of example use as students advance from middle school into post secondary school. Using this developmental information, the researchers are creating instructional strategies that help students think about the nature and value of proof as well as how to construct a mathematical proof.

Arizona State University (ASU), University of Arizona (U of A)
08/15/2019

Focusing on the Southwest Desert ecoregion, this conference addresses the need for research on effective instructional methods that can be used to support students' science learning in school gardens. The conference will lead to the development of an ecoregional model for garden-based science teaching (GBST) that builds on regional ecological and cultural resources to engage teachers and students in richer and more relevant science learning experiences.

Syracuse University (SU)
07/01/2011

The Science and Mathematics Simulated Interaction Model (SIM) project will design and clinically test simulations for teachers. The hypothesis is that simulations will identify strengths and misconceptions in teachers' understanding of content and pedagogy, increase instructional capacity, and advance student achievement. The SIM will be for pre-service and induction-stage teachers. The simulations will focus on common problems of practice, challenges, dilemmas, issues that mathematics and science teachers encounter at the secondary level.

Concord Consortium
10/01/2006

The Science of Atoms and Molecules is supplemental material, constituting about 10% of the course work and providing a progressive understanding of the centrality of atomic scale phenomena and their implications in each discipline. Upgrading the computational models developed in the Molecular Workbench, the materials allow students to experience the atomic world and build models that can be used to understand and predict macroscopic phenomena.

Boston College (BC)
08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

Boston College (BC)
08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

University of California, Irvine (UC Irvine)
08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

University of California, Irvine (UC Irvine)
08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

Tufts University
08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

Tufts University
08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

Smithsonian Astrophysical Observatory
05/01/2018

This project proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students.

National Academy of Sciences (NAS)
05/15/2012

This project provides support for the U.S. National Commission on Mathematics Instruction, a primary means for ensuring U.S. participation in mathematics education at the international level. The project will facilitate interaction with mathematicians and mathematics educators from around the world as issues about instructional practices are addressed. The participation of representatives of USNC/MI on the international stage opens venues for collaborative research and opportunities to learn about successful practices from other countries.