The Science and Mathematics Simulated Interaction Model (SIM) project will design and clinically test simulations for teachers. The hypothesis is that simulations will identify strengths and misconceptions in teachers' understanding of content and pedagogy, increase instructional capacity, and advance student achievement. The SIM will be for pre-service and induction-stage teachers. The simulations will focus on common problems of practice, challenges, dilemmas, issues that mathematics and science teachers encounter at the secondary level.
Projects
This project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.
This project examines the first-year implementation of a program that will provide low-cost netbook computers and specialized software to fifth and sixth grade students in four schools in Southern California. The PIs collect baseline and early implementation data to determine effects of the intervention on students' academic achievement in science, academic writing in science, and interest in further STEM study.
This project continues research and development work on high school instructional materials that integrate biology, computing, and mathematics. The project goal is to develop and test a one-semester high school course. The course consists of some modules developed under a previous NSF grant as well as some new material. Intended deliverables include up to five new instructional modules and a coherent one-semester course suitable for the increasing state requirements for a fourth year of mathematics.
This is a 3.5-year efficacy study of the Developing Mathematical Ideas (DMI) elementary math teacher professional development (PD) program. DMI is a well-known, commercially available PD program with substantial prior evidence showing its impact on elementary teachers' mathematical and pedagogical knowledge. However, no studies have yet linked DMI directly with changes in teachers' classroom practice, or with improved student outcomes in math. This study aims to remedy this gap.
This project is analyzing and sharing baseline data on the achievement of African American and Hispanic girls on national and state assessments. The objectives of the project are to: (1) conduct a critical analysis of achievement data for African American and Hispanic female students; (2) organize a conference featuring presentation of the data analysis and a national speaker; (3) provide STEM career information and materials; and (4) share results of the achievement data analysis.
This research and development project examines the impact of the Project-Based Inquiry Science (PBIS) middle school science curriculum. The research questions explored will look into efficacy, implementation, and teacher practice. A unique feature of the study’s design is an analytic focus on the conditions needed to implement the curriculum in ways that improve student learning in light of the Framework for K-12 Science Education.
This project will synthesize existing literature on modeling-based instruction (MBI) in K-12 science education over the last three decades. It will rigorously code and examine the literature to conceptualize the landscape of the theoretical frameworks of MBI approaches, identify the effective design features of modeling-based learning environments with an emphasis on technology-enhanced ones, and identify the most effective MBI practices that are associated with successful student learning through a meta-analysis.
This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.
This project is convening a series of two professional mini-conferences and one professional summit to address issues related to the mathematical education of African American students, Pre-K-16.
This project investigates the educational value of computer technologies for learning engineering. The project engages high school students to design, build, and evaluate an energy-efficient model house with the aid of computer simulation and design tools.
This project convenes two professional mini-conferences and one professional summit to address issues related to the mathematical education of African American students. Research suggests that there is a negative relationship between African American students and mathematics. This relationship is exacerbated by the underrepresentation of African American students in advanced mathematics classes, even when they are the majority of school populations, and the overrepresentation of African American students in lower-track mathematics courses and special education.
This project is a four-year, longitudinal, mixed-methods study of 12 school districts’ implementation of elementary mathematics instructional materials. It investigates the relationships among the district level of coherence of implementation, the school level of support for implementation, the school level of use of materials, and the effects on student outcomes.
This project addresses biology teachers and students at the high school level, responding to the exponential increases occurring in biology knowledge today and the need for students to understand the experimental basis behind biology concepts. The project studies the feasibility of engaging students in an environment where they can learn firsthand how science knowledge develops in the fields of bioinformatics and DNA science by performing collaborative, simulated experiments to solve open-ended problems.
This project is developing a two-year, intensive professional development model to build middle-grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model helps teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice.
The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
This project is revising and field testing six existing modules and developing, pilot testing, and field testing two engineering modules for required middle school science and mathematics classes: Catch Me if You Can! with a focus on seventh grade life science; and Creating Bioplastics targeting eighth grade physical science. Each module addresses an engineering design challenge of relevance to industries in the region and fosters the development of engineering habits of mind.
To meet College and Career-Ready standards in mathematics, classroom instruction must change dramatically. As in past reform efforts, many look to professional development as a major force to propel this transformation, yet not enough is known about mathematics professional development programs that operate at scale in the United States. In this project, we evaluated one such program.
This research and development project provides resources for ninth-grade mathematics students and teachers by developing, piloting, and field-testing intervention modules designed as supplementary materials for Algebra 1 classes (e.g., double-period algebra). Rather than developing isolated skills and reviewing particular topics, these materials aim to foster the development of mathematical habits of mind—in particular, the algebraic habit of abstracting from calculations, a key unifying idea in the transition from arithmetic to algebra.
This project contributes to the emerging knowledge base for reform-minded middle school STEM instructional materials development through the development, field-testing, and evaluation of a prototype instructional materials module specifically designed to stimulate and sustain urban-based students’ interest in STEM. The module includes guided inquiry-oriented activities thematically linked by the standards-aligned concept of energy transfer, which highlight the fundamental processes and integrative nature of 21st century scientific investigation.
This project investigates how high school students' understanding about design thinking compares to that of experienced practitioners and whether participation in a multiyear sequence of courses focused on engineering correlates with changes in design thinking. The project builds upon the Standards for Technological Literacy and courses developed at the University of Colorado and the University of Maryland, Baltimore County.
This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"
This project targets first- and second-grade children who struggle to develop a deeper understanding of the mathematical strand of number and operation. The research team will (a) identify the various specific cognitive obstacles of first- and second-grade students who are struggling in number and operation, and (b) explore how instructional tasks designed to address specific cognitive obstacles affect the learning trajectory of struggling learners in number and operation.
This project is exploring how curricula and assessment using dynamic, interactive scientific visualizations of complex phenomena can ensure that all students learn significant science content. Dynamic visualizations provide an alternative pathway for students to understand science concepts, which can be exploited to increase the accessibility of a range of important science concepts. Computer technologies offer unprecedented opportunities to design curricula and assessments using visual technologies and to explore them in research, teaching, and learning.
We developed and tested two ecology case study units for urban high school students underserved in their connection to nature. The case studies, based on digital media stories about current science produced by the American Museum of Natural History, use current scientific data to link ecological principles to daily life and environmental issues. Preliminary testing results show that treatment students made significantly higher gains than the control students on the project's major learning goals.