This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.
Projects
This project will design instructional assessment materials by using an innovative and unique design approach that brings together the coherent and systematic design elements of evidence-centered design, an equity and inclusion framework for the design of science materials, and inclusive design principles for language-diverse learners. Using this three-pronged approach, this project will develop a suite of NGSS aligned formative assessment tasks for first-grade science and a set of instructional materials to support teachers as they administer the formative assessments to students with diverse language skills and capacities.
This project will design and research a professional development (PD) model in which elementary teachers experience integrated, place-based, culturally sustaining STEM curriculum focused on local watersheds and grounded in local Native American cultural values and knowledge. The teachers will then design and implement their own culturally relevant STEM unit, guided by the PD, which is situated within their local watershed and Indigenous community.
Widely-adopted science education standards have expanded expectations for students to learn science research processes. To address these needs, the project will research and develop curricular materials and classroom practices that teachers can use to bring authentic science into their classes and engage students as active science researchers. The project, called MothEd, will focus on the study of moths, which are well-suited to the project’s goal of having students conduct authentic scientific investigations.
This project will engage middle school students in place-based coastal erosion investigations that interweave Indigenous knowledge and Western STEM perspectives. Indigenous perspectives will emphasize learning from place and community; Western STEM perspectives will focus on systems and computational thinking. The project will position middle school students in a culturally congruent epistemological stance (student-as-anthropologist), allowing them to build Earth science learning from both Indigenous knowledge as well as Western-style inquiry and promote their ability to apply integrated Earth science, mathematics, and computational thinking skills in the context of coastal erosion.
This project will provide a field-based science and mathematics teacher education program that supports teaching focused on students’ affective development through culturally responsive practices. The project's teacher education program takes place over a two-year period and models how culturally responsive and affective instruction can occur in the STEM classroom to engage students.
This project represents a new approach to quality assessment of K-12 science and engineering learning experiences. By updating and expanding the Dimensions of Success (DoS) observation tool initially established for informal science learning settings to middle school science and engineering classrooms (DoS-MSSE), the project will create and implement a sustainable and scalable system of support for teachers who are learning how to implement the Next Generation Science Standards (NGSS) Framework for K-12 effectively and equitably.
This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.
This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.
Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, this project seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it.
This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.
This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of addressing specific social needs and empowering people or groups of people.
This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of addressing specific social needs and empowering people or groups of people.
This project will promote pre-K teachers' use of specific teaching strategies that have been shown to enhance young children's learning and social skills. To enhance teachers' use of these practices, the project will develop a new practitioner-friendly version of the Classroom Quality Real-time Empirically-based Feedback (CQ-REF) tool for instructional coaches who work with pre-K teachers. The CQ-REF tool will guide coaches' ability to observe specific teacher practices in their classrooms and then provide feedback to help teachers evaluate their practices and set goals for improvement, addressing the need for accessible, real-time feedback on high quality pre-K classroom teaching.
This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.
This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. It is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching.
This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise. The project will examine the malleable factors affecting the ability of teachers to engage underrepresented students in innovative urban citizen science projects with a focus on the synergistic learning that occurs as teachers, students, scientists, and community members work together on addressing complex socio-scientific issues.
This project will design and develop specialized instructional materials and guidelines for teaching secondary algebra in linguistically diverse classrooms. These materials will incorporate current research on student learning in mathematics and research on the role of language in students' mathematical thinking and learning. The work will connect research on mathematics learning generally with research on the mathematics learning of ELLs, and will contribute practical resources and guidance for mathematics teachers who teach ELLs.
This project will develop three replacement units for biology and refine them through classroom testing. The units will be models of STEM integration by using the important concepts of proportional reasoning and algebraic thinking and engineering re-design to address big ideas in science while also promoting the learning of 21st century skills. The materials will be educative for teachers, and the teacher materials and professional development methods will work at scale and distance.
The research and educational activities of this project focus on advancing the field in the area of fraction operation algorithm development. The goal of this research is to identify core mathematical teaching practices that engage and support students in algorithmic thinking associated with fraction operations. The educational product of this work will be written educational materials that can be used to support the general population of teachers in this domain.
A major scientific issue of our time is global warming and climate change. Many facets of human life are and will continue to be influenced by this. However, an adequate understanding of the problem requires an understanding of various domains of science. There has been little research done on effects of intervention on student learning of these topics. This project shows an improvement in student knowledge of climate change and related issues.
This project is examining the nature of mathematical discourse in middle school mathematics classrooms; the ways in which middle school mathematics teachers’ beliefs impact the discourse when working to enact reform-oriented instruction; and how this information can be used to incorporate practitioner research using concepts and tools of discourse analysis to improve mathematics instruction. The educational goal is to design a long-term professional development program that will continue beyond funding with other cohorts of teachers.