The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership. Teachers will use their training to teach the curriculum to their students with students receiving mentoring from the scientists through an online platform. Evaluation will examine whether this curriculum, professional development, and mentoring by scientists will improve student achievement on science content and attitudes toward scientists. The project will use mixed-methods approaches to explore potential factors underlying efficacy differences between in-person and online professional development. An important component of this project is comparing in-person professional development to an online delivery of professional development, which can be more cost-effective and accessible by teachers, especially those in rural and underserved areas.
Projects
This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.
This project will develop, pilot, and refine a set of coordinated and complementary activities that teacher education programs can use in both online and face-to-face settings to provide practice-based opportunities for preservice teachers to develop their ability to facilitate argumentation-focused discussions in mathematics and science.
Through the integration of STEM content and literacy, this project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue.
The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to disparities in student access to high-quality, advanced physics instruction by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials. This program will help teachers adapt, adopt, and integrate high-quality, university-aligned physics instruction into their classrooms, in turn opening more equitable, clear, and viable pathways for students into STEM education and careers.
This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.
This project investigates how to support sustained engagement in computational modeling in middle school classrooms in two ways: 1) Design and develop an accessible modeling toolkit and accompanying thematically linked curricular units; and, 2) Examine how this toolkit and curriculum enable students to become sophisticated modelers and integrate modeling with other scientific practices such as physical experimentation and argumentation.
The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.
This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.
This project uses a new theoretical framework that specifies criteria for developing scientific thinking skills that include the value that people place on scientific aims, the cognitive engagement needed to evaluate scientific claims, and the scientific skills that will enable one to arrive at the best supported explanation of a scientific phenomenon. The project will work with high school biology teachers to investigate their own understanding of scientific thinking, how it can be improved through professional development, and how this improvement can translate into practice to support student learning.
This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.
This project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science.
This project will collect and curate digital stories of diverse mathematicians sharing stories of their learning within and beyond schools. These short videos will become part of a more extensive digital database of mathematics stories that will be aligned with K-8 mathematics topics and then materials will be developed for teachers to use. The project team will explore the use of mathematics storytelling on K-8 teacher and student mathematics learning and engagement.
This project will develop a set of educative resources, assessment tools and teacher professional development (PD) activities to support teachers in developing knowledge of CS standards and improving their instructional pedagogy. Teachers will learn to use formative assessments related to these standards to determine student understanding. Improved CS instruction that is responsive to the needs and challenges of the student population is particularly critical in school districts with a large population of students who are typically underserved and under-represented in computer science. The project, a partnership between SRI International and the Milwaukee Public School District, will provide professional development experiences tied to standards instead of a specific curriculum in order to support diverse teachers teaching a variety of computer science curricula using different programming languages. Teachers will receive training via a combination of virtual webinars and face-to-face instruction. Teachers will have opportunities to evaluate their own teaching and measure their students' progress towards the standards.
To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena. In-person and virtual professional learning experiences will further help teachers who have limited district support for science to incorporate place-based approaches. Participating teachers will range from rural and urban settings in California, Colorado, and Maine to ensure the end products of this project are relevant, scalable, appropriate for a wide range of students across the country.
This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts. Results from the previous project focused on rural teachers and their coaches show that the professional development model increased connections between what teachers notice about student thinking and broader principles of teaching and learning, that teachers were able to enact stronger levels of ambitious mathematics instruction, and that teachers who received coaching showed a stronger focus on math content and instructional practice. This extension of the model to coaches includes an online content-focused coaching course, cycles of one-on-one video-based coaching, and an online video club to analyze coaching practice. The video clubs will be structured as a graduated model that will begin with facilitation by mentor coaches and move into coach participants facilitating their own sessions.
This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.
This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy.
This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference and to use these tools to generate knowledge about the natural world.
This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.
This project will study ways to improve classroom instruction grounded in science practices to address inequities in science education for emerging bilingual students. The project will create research-based resources for teacher educators that focus on developing preservice elementary teachers' understanding and abilities to support emerging bilingual students' engagement in science practices.
This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.
This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS).
The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.
The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).