This collaborative project is developing an online, professional teaching community that addresses issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that works to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students.
Projects
This collaborative project is developing an online, professional teaching community that addresses issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that works to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students.
This project focuses on practicing and preservice secondary mathematics teachers and mathematics teacher educators. The project is researching, designing, and developing materials for preservice secondary mathematics teachers that enable them to acquire the mathematical knowledge and situated rationality central to teaching, in particular as it regards the leading of mathematical discussions in classrooms.
This project will develop and implement an innovative online mathematics professional development model designed to provide growth opportunities for teachers in rural districts who normally lack access to such opportunities. The project will focus on developing teacher capacity to enact ambitious, responsive instruction aligned with the Common Core State Standards for Mathematics (CCSSM), and thus will be sustained, interactive, and of sufficient duration to help teachers transform their practices.
The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.
The project is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.
This project is designed to enhance and study the development of elementary science teachers’ skills in managing productive classroom talk in inquiry-based physical science studies of matter. The project hypothesizes that aligning professional learning with conceptually-driven curricula and emphasizing the development of scientific discourse changes classroom culture and increases student learning. The project is developing new Web-based resources, Talk Science PD, to help elementary teachers facilitate scientific discourse.
This five-year research project has as its central aim the testing of the Target Inquiry (TI) model of teacher professional development with secondary school chemistry teachers. This model emphasizes the importance of the inquiry process in teaching and learning science by combining a research experience for teachers (RET) with curriculum adaptation and action research.
Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms.
This project forms communities of practice among K-6 teachers using Web-based resources that allow audio and video connections in real time (http://justaskateacher.com) and conducts research that examines the impact of these communities of practice on school programs, teaching practices, and student achievement. We invite K-6 teachers and teacher educators to join us at http://justaskateacher.com.
This research study investigates the impact of the wireless environment on high school science resulting in a professional development model that will inform professional developers, administrators, policy-makers and teachers. The project uses in-depth case studies to examine context factors (e.g. technology implementation plans, school culture, extent and type of teacher professional development and teacher background) and critical interactions that may influence science instructional practice in wireless high school science classrooms.
This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.
This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.
This two-year project will develop, pilot, validate, and publish a Teacher's Guide to the Science and Mathematics Resources of the ELPD Framework. This guide and related materials will translate the key science and mathematics concepts, ideas, and practices found within the ELPD Framework into classroom resources for direct use by teachers, schools, and districts to support English learners (ELs).
This project will modify the teacher preparation program for preK-8 teachers. The program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge, and learn to encourage students' mathematical thinking. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.
This study explores the ways middle school mathematics teachers implement standards-based curriculum materials in urban schools. It takes the view that instructional materials are cultural tools and examines how teachers use these tools to plan and implement the curriculum in their classrooms. The study is using a mixed methods approach that combines surveys of teachers in 30 schools in the Newark Public Schools district and closer observations of teachers in selected case schools.
This project will develop and study approaches to equip 4th and 5th grade general and special education teachers to teach computer science (CS) to a broad range of learners with disabilities through professional development. The project will aim to improve accessibility, accommodations, and highlight the role of paraeducators to increase participation and learning in CS for students with disabilities, and it will investigate the impact of the professional development on teachers’ instruction and the influence of the professional development model on student learning, ability beliefs, and attitudes about CS.
This project will develop and study approaches to equip 4th and 5th grade general and special education teachers to teach computer science (CS) to a broad range of learners with disabilities through professional development. The project will aim to improve accessibility, accommodations, and highlight the role of paraeducators to increase participation and learning in CS for students with disabilities, and it will investigate the impact of the professional development on teachers’ instruction and the influence of the professional development model on student learning, ability beliefs, and attitudes about CS.
This study addresses two open questions in mathematics education and teacher learning research related to groupwork monitoring. Using contemporary information visualization techniques and open-source tools, alongside a video-based coaching activity, teachers will a) analyze classroom video records featuring group math discussions and b) uncover and investigate their specific interactions with student groups as well as their overall approach to this important phase of their lessons. Through these tools, teachers will develop strategic and integrated understandings of effective groupwork monitoring strategies. As a result of this work, teachers and researchers will be able to better connect teachers’ monitoring choices to students’ peer-to-peer math talk.
This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.
Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.
Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.
This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.
Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on robotics curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK).
The purpose of this project is to develop, implement and test a professional development program, SOAR for Math, to build capacity for mentors and teachers to improve English learner's academic language development and mathematical content understanding.