Projects

10/01/2006

This project will provide an empirically-supported learning progression for a key scientific practice, scientific modeling. The specific instructional materials created as part of the project can serve as a model other developers can use to design materials supporting scientific modeling and other practices. The model for educative curriculum materials as a form of teacher support can be adapted to support teacher learning about modeling or other scientific practices in other curriculum materials.

03/12/2007

Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.

08/15/2007

This project uses a mixed-methods design to test the hypothesis that key approaches to high school reform grease the mathematics and science pipelines for all students in reforming high schools. This study is intended to provide understanding of pipeline progression in reforming high schools and strategies successful schools employ to ensure timely pipeline progress for all students, particularly those historically underrepresented and underserved in mathematics and science and post-secondary education.

08/15/2007

This grant examines the changes teachers and students go through in their first year of implementing a New Technology High School project-based curriculum for ninth graders in two high schools. This first year of implementation is part of a phased-in implementation for subsequent grades. The NTHS approach calls for moving from more traditional approaches to mathematics and science education to project-based curricula that posits mathematics and science in the context of real-world issues and problems.

09/01/2007

This project aims to develop a software diagnostic tool for integrating diagnostic interviews, group administered assessments, and student data in real-time so that teachers can enter and view student status information. This project would concentrate on rational number learning in grades 3-8. The design is based on a model of learning trajectories developed from existing research studies.

01/01/2008

This project engages children in classrooms across the country in an authentic investigation of Devonian fossils. Goals include supporting children in the use of evidence in constructing explanations of natural phenomena, and motivating culturally and linguistically diverse groups of children to engage in learning science. Deliverables include development and testing of an interactive website where children learn how to identify the fossils they find and add their own data to an emerging database.

01/01/2008

The project has had three major areas of focus:  (1) Offering professional development to help elementary and 6th grade teachers become more responsive teachers, attending and responding to their students' ideas and reasoning; (2)  Developing web-based resources (both curriculum and case studies) to promote responsive teaching in science; and (3) research how both teachers and students progress in their ability to engage in science inquiry. 

08/15/2008

This project investigates the potential of online role-playing games for scientific literacy through the iterative design and research of Saving Lake Wingra, an online role-playing game around a controversial development project in an urban area. Saving Lake Wingra positions players as ecologists, department of natural resources officials, or journalists investigating a rash of health problems at a local lake, and then creating and debating solutions.

09/15/2008

The goal of this project is to accelerate the progress of early-career and pre-service science teachers from novice to expert-like pedagogical reasoning and practice by developing and studying a system of discourse tools. The tools are aimed at developing teachers' capabilities in shaping instruction around the most fundamental science ideas; scaffolding student thinking; and adapting instruction to diverse student populations by collecting and analyzing student data on their thinking levels.

09/15/2008

A principled framework is created for the development of learning progressions in science that can demonstrate how their use can transform the way researchers, educators and curriculum developers conceptualize important scientific constructs. Using the construct of transformation of matter, which requires understanding of both discrete learning goals and also the connections between them, a hypothetical learning progression is constructed for grades 5-12.

09/15/2008

This project is working to create a cyber infrastructure that supports development and documentation of additional interventions for teacher professional development using the video collection, as well as other videos that might be added in the future by teacher educators or researchers, including those working in other STEM domains.

08/15/2009

This project is using data from interviews with 160 K-12 students and 20 adults to describe common understandings and progressions of development for negative number concepts and operations. The project is motivated by the widely acknowledged finding that students have difficulty mastering key concepts and skills involved in work with integers.

09/01/2009

This project targets first- and second-grade children who struggle to develop a deeper understanding of the mathematical strand of number and operation. The research team will (a) identify the various specific cognitive obstacles of first- and second-grade students who are struggling in number and operation, and (b) explore how instructional tasks designed to address specific cognitive obstacles affect the learning trajectory of struggling learners in number and operation.

09/01/2009

This project is carrying out a research and development initiative to increase the success rates of our most at-risk high school students—ninth-grade students enrolled in algebra classes but significantly underprepared for high school mathematics. It will also result in new understandings about effective approaches for teaching mathematics to struggling students and about effective ways for implementing these approaches at scale, particularly in urban school districts.

09/15/2009

This project is developing a two-year, intensive professional development model to build middle-grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model helps teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice.

03/15/2010

The aim of this project is to explore the hypothesis that a curricular focus on quantitative reasoning in middle grades mathematics can enhance development of student skill and understanding about mathematical proof. The project is addressing that hypothesis through a series of studies that include small group teaching experiments with students, professional development work with teachers, and classroom field tests of curricular units that connect quantitative reasoning and proof in algebra.

07/15/2010

This project is designing, developing, and testing an innovative approach to elementary students' learning in the critical areas of multiplicative reasoning, fractions, and proportional reasoning. The project is building on the successful El'Konin-Davydov (E-D) elementary mathematics curriculum that originated in Russia to develop a curriculum framework that can be implemented in U. S. schools. The ultimate product of the research will be a rational number learning progression consisting of carefully articulated and sequenced learning goals.

09/01/2010

This project is a collaborative effort that aims to develop a grade 3-5 Learning Progression that will provide a coherent approach to teaching energy in elementary school and lay a strong foundation for further learning in middle school. The project will identify a network of core concepts and principles about energy that are fundamental and general enough to be compatible with scientific ideas about energy, yet within reach of 5th graders.

09/01/2010

This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through students’ understanding of scientific practice as measured by their attention to generality of explanation, clarity of communication, audience understanding, evidentiary support, and mechanistic versus descriptive accounts.

09/15/2010

This project builds on current learning progression research to study the effects of teaching Tools for Reasoning on development of middle school students' capacities to understand the Earth's hydrologic systems. The project applies a design-based research approach using iterative cycles of Tool design/revision, teacher workshops, and small-scale pilot tests of Tools through classroom experiments with teachers and students in Montana and Arizona.

08/15/2011

This project is developing a model for integrating best practices in technology-supported instructional design and formative assessment for genetics instruction in upper elementary, middle and high school. Using the Web-based Inquiry Science Environment platform, the project is developing school curriculum that scaffold and model scientific practices, enable students to interface with real-world problems, provide opportunities for students to make connections between visible phenomena and underlying genetic processes, and promote student monitoring and reflection on learning.

08/15/2011

This project engages high-school students as student-tutors who create screen-capture videos that demonstrate step-by-step solutions to mathematical problems and explicate the use of interactive applets. The project tests whether the mathematical and communication skills of student-tutors improve in the process of making the video materials. It also tests whether teachers and student users benefit from the videos. The project will examine whether the process of creating and disseminating the videos is replicable and scalable.

09/01/2011

This project is developing and testing a curricular learning progression of early algebra objectives and activities for students in grades 3 - 5. The goal of the work is to provide teachers with curricular guidance and instructional resources that are useful in preparing students for success in study of algebra at the middle grade level. The project is also developing and validating assessment tools for evaluating student progress toward essential pre-algebra mathematical understandings.

09/01/2011

LOCUS (Levels of Conceptual Understanding in Statistics) is an NSF Funded DRK12 project (NSF#118618) focused on developing assessments of statistical understanding. These assessments will measure students’ understanding across levels of development as identified in the Guidelines for Assessment and Instruction in Statistics Education (GAISE). The intent of these assessments is to provide teachers and researchers with a valid and reliable assessment of conceptual understanding in statistics consistent with the Common Core State Standards (CCSS).

09/01/2011

This project is focused on creating, testing, refining, and studying a computer-based, individualized, interactive learning system for intermediate/middle school students or by teachers in classrooms. This learning system is called Individualized Dynamic Geometry Instruction and will contain four instructional modules in geometry and measurement that reflect the recommendations of the Common Core State Standards.