Science

A Mixed-Methods Exploration of Mastery Goal Support in 7th-Grade Science Classrooms

Mastery goal structures, which communicate value for developing deeper understanding, are an important classroom support for student motivation and engagement, especially in the context of science learning aligned with the Next Generation Science Standards. Prior research has identified key dimensions of goal structures, but a more nuanced examination of the variability of teacher-enacted and student-perceived goal structures within and across classrooms is needed.

Author/Presenter

David McKinney

Alexandra A. Lee

Jennifer A. Schmidt

Gwen C. Marchand

Lisa Linnenbrink-Garcia

Year
2022
Short Description

Mastery goal structures, which communicate value for developing deeper understanding, are an important classroom support for student motivation and engagement, especially in the context of science learning aligned with the Next Generation Science Standards. Prior research has identified key dimensions of goal structures, but a more nuanced examination of the variability of teacher-enacted and student-perceived goal structures within and across classrooms is needed. Using a concurrent mixed-methods approach, we developed case studies of how three 7th-grade science teachers enacted different goal structures while teaching the same chemistry unit and how their students perceived these goal structures.

A Mixed-Methods Exploration of Mastery Goal Support in 7th-Grade Science Classrooms

Mastery goal structures, which communicate value for developing deeper understanding, are an important classroom support for student motivation and engagement, especially in the context of science learning aligned with the Next Generation Science Standards. Prior research has identified key dimensions of goal structures, but a more nuanced examination of the variability of teacher-enacted and student-perceived goal structures within and across classrooms is needed.

Author/Presenter

David McKinney

Alexandra A. Lee

Jennifer A. Schmidt

Gwen C. Marchand

Lisa Linnenbrink-Garcia

Year
2022
Short Description

Mastery goal structures, which communicate value for developing deeper understanding, are an important classroom support for student motivation and engagement, especially in the context of science learning aligned with the Next Generation Science Standards. Prior research has identified key dimensions of goal structures, but a more nuanced examination of the variability of teacher-enacted and student-perceived goal structures within and across classrooms is needed. Using a concurrent mixed-methods approach, we developed case studies of how three 7th-grade science teachers enacted different goal structures while teaching the same chemistry unit and how their students perceived these goal structures.

A Mixed-Methods Exploration of Mastery Goal Support in 7th-Grade Science Classrooms

Mastery goal structures, which communicate value for developing deeper understanding, are an important classroom support for student motivation and engagement, especially in the context of science learning aligned with the Next Generation Science Standards. Prior research has identified key dimensions of goal structures, but a more nuanced examination of the variability of teacher-enacted and student-perceived goal structures within and across classrooms is needed.

Author/Presenter

David McKinney

Alexandra A. Lee

Jennifer A. Schmidt

Gwen C. Marchand

Lisa Linnenbrink-Garcia

Year
2022
Short Description

Mastery goal structures, which communicate value for developing deeper understanding, are an important classroom support for student motivation and engagement, especially in the context of science learning aligned with the Next Generation Science Standards. Prior research has identified key dimensions of goal structures, but a more nuanced examination of the variability of teacher-enacted and student-perceived goal structures within and across classrooms is needed. Using a concurrent mixed-methods approach, we developed case studies of how three 7th-grade science teachers enacted different goal structures while teaching the same chemistry unit and how their students perceived these goal structures.

How Do Interdisciplinary Teams Co-construct Instructional Materials Emphasising Both Science and Engineering Practices?

To build a sustainable future, science and engineering education programmes should emphasise scientific investigation, collaboration across traditional science topics and disciplines, and engineering design, including design and evaluation of solutions.

Author/Presenter

Nancy Butler Songer

Year
2022
Short Description

To build a sustainable future, science and engineering education programmes should emphasise scientific investigation, collaboration across traditional science topics and disciplines, and engineering design, including design and evaluation of solutions. We adopted a qualitative case study design to address the research question, What is the process of team co-construction of instructional materials that emphasize learning through both science investigation and engineering design? The paper outlines the first year of our team co-construction activities involving the design, implementation, and evaluation of instructional materials for secondary science.

Usable STEM Knowledge for Tomorrow’s STEM Problems

We need STEM knowledge programs in formal and informal settings that guide learners in applying STEM learning to the creation of solutions.

Songer, N. B. (2023). Usable STEM knowledge for tomorrow’s STEM problems. Open Access Government. January 2023, pp.294-295. https://doi.org/10.56367/OAG-037-10193

Author/Presenter

Nancy Songer

Lead Organization(s)
Year
2023
Short Description

We need STEM knowledge programs in formal and informal settings that guide learners in applying STEM learning to the creation of solutions.

Beyond the Design of Assessment Tasks: Expanding the Assessment Toolkit to Support Teachers’ Formative Assessment Practices in Elementary Science Classrooms

Teachers experience challenges in effectively using formative assessment practices in their classrooms. In the US, only 28% of elementary teachers report using formative assessment. This study highlights the need to design resources to meet teacher needs and support teachers in making sense of assessment information to inform three-dimensional learning and teaching.

Author/Presenter

Sania Zahra Zaidi

Samuel Arnold

Elizabeth M. Lehman

Carla Strickland

Year
2022
Short Description

Teachers experience challenges in effectively using formative assessment practices in their classrooms. In the US, only 28% of elementary teachers report using formative assessment. This study highlights the need to design resources to meet teacher needs and support teachers in making sense of assessment information to inform three-dimensional learning and teaching.

Beyond the Design of Assessment Tasks: Expanding the Assessment Toolkit to Support Teachers’ Formative Assessment Practices in Elementary Science Classrooms

Teachers experience challenges in effectively using formative assessment practices in their classrooms. In the US, only 28% of elementary teachers report using formative assessment. This study highlights the need to design resources to meet teacher needs and support teachers in making sense of assessment information to inform three-dimensional learning and teaching.

Author/Presenter

Sania Zahra Zaidi

Samuel Arnold

Elizabeth M. Lehman

Carla Strickland

Year
2022
Short Description

Teachers experience challenges in effectively using formative assessment practices in their classrooms. In the US, only 28% of elementary teachers report using formative assessment. This study highlights the need to design resources to meet teacher needs and support teachers in making sense of assessment information to inform three-dimensional learning and teaching.

Professional Development for STEM Integration Analyzing Bioinformatics Teaching by Examining Teachers' Qualities of Adaptive Expertise

Real-world science exploration, where STEM fields are integrated to address societal issues, stands in contrast to the compartmentalized courses offered in high school. This reality calls into question the utility of high school science teaching and learning for preparing a STEM-literate citizenry and for fulfilling workforce needs.

Author/Presenter

Susan A. Yoon

Jooeun Shim

Katherine Miller

Amanda M. Cottone

Noora Fatima Noushad

Jae-Un Yoo

Michael V. Gonzalez

Ryan Urbanowicz

Blanca E. Himes

Lead Organization(s)
Year
2022
Short Description

Bioinformatics—a rapidly developing discipline that integrates mathematical and computational techniques with biological knowledge for applications in medicine, the environment, and other important aspects of life—is an example of an emerging field that illustrates the need for a greater focus on STEM integration in K12 education. Studies on teaching bioinformatics in high school reveal difficulties that arise from a lack of curricular resources and teacher knowledge to effectively integrate disciplinary content. In this study, we investigated challenges teachers experienced in teaching a problem-based bioinformatics unit after participating in professional development (PD) activities that were carefully constructed using research-based effective PD characteristics.

A Map that Shows Earth Rocks!

Concord Consortium’s new Earth Rocks Map displays a generalized representation of Earth’s geology, focused primarily on the distribution of the three major rock types (igneous, metamorphic, and sedimentary). What makes this map different is that it strips out information about geologic eras, highlighting the distribution of rocks found on Earth’s surface.

Lord, T. & Pallant, A. (2022, November 21). A map that shows Earth rocks! Concord Consortium Blog. https://concord.org/blog/a-map-that-shows-earth-rocks/

Author/Presenter

Lead Organization(s)
Year
2022
Short Description

Concord Consortium’s new Earth Rocks Map displays a generalized representation of Earth’s geology, focused primarily on the distribution of the three major rock types (igneous, metamorphic, and sedimentary). What makes this map different is that it strips out information about geologic eras, highlighting the distribution of rocks found on Earth’s surface.

Supporting a Museum-based Network of Science Teacher Leaders

In this article we describe an Informal Science Institution (ISI)-based professional learning program for science teacher leaders (STLs) developed within the context of a research-practice partnership (RPP). The RPP model supports practitioners and researchers to engage in joint inquiry, as they work together to understand and improve designs for learning (Coburn and Penuel 2016; Farrell et al. 2022).

Author/Presenter

Sara C. Heredia

Michelle Phillips

Julie H. Yu

Year
2022
Short Description

In this article we describe an Informal Science Institution (ISI)-based professional learning program for science teacher leaders (STLs) developed within the context of a research-practice partnership (RPP).