Energy: A Multidisciplinary Approach for Teachers (EMAT) Designing and Studying a Multidisciplinary, Online Course for High School Teachers

How can research-based findings and advances help society to re-envision STEM learning and education? This report captures key takeaways, strategies, and challenges identified during the November 2015 workshop, including: research-based advances for STEM learning; multiple stakeholder communities around STEM schools; social justice, equity, and excellence in STEM schools and communities; scale and sustainability
How do we measure knowledge in use? In this paper we describe how we use principles of evidence-centered design to develop classroom-based science assessments that integrate three dimensions of science proficiency—disciplinary core ideas, science practices, and crosscutting concepts. In our design process, we first elaborate on, or “unpack”, the assessable components of the three dimensions.
How do we measure knowledge in use? In this paper we describe how we use principles of evidence-centered design to develop classroom-based science assessments that integrate three dimensions of science proficiency—disciplinary core ideas, science practices, and crosscutting concepts.
How do we measure knowledge in use? In this paper we describe how we use principles of evidence-centered design to develop classroom-based science assessments that integrate three dimensions of science proficiency—disciplinary core ideas, science practices, and crosscutting concepts. In our design process, we first elaborate on, or “unpack”, the assessable components of the three dimensions.
How do we measure knowledge in use? In this paper we describe how we use principles of evidence-centered design to develop classroom-based science assessments that integrate three dimensions of science proficiency—disciplinary core ideas, science practices, and crosscutting concepts.
How do we measure knowledge in use? In this paper we describe how we use principles of evidence-centered design to develop classroom-based science assessments that integrate three dimensions of science proficiency—disciplinary core ideas, science practices, and crosscutting concepts. In our design process, we first elaborate on, or “unpack”, the assessable components of the three dimensions.
How do we measure knowledge in use? In this paper we describe how we use principles of evidence-centered design to develop classroom-based science assessments that integrate three dimensions of science proficiency—disciplinary core ideas, science practices, and crosscutting concepts.