Science

What Should We Investigate? Using a Classroom Decomposition Chamber to Support the Development of Investigation Questions

In this article, we describe how we use classroom phenomena to help fifth grade students develop testable questions and productive investigations. Engaging students in observing and seeking to explain a classroom decomposition chamber has helped them to engage more successfully in the science and engineering practices (SEPs) of asking questions, planning and carrying out investigations, and constructing explanations.

Author/Presenter

Eve Manz

Annabel Stoler

Lorin Federico

Samantha Patton

Lindsay Weaver

Genelle Diaz Silveira

Souhaila Nassar

Lead Organization(s)
Year
2024
Short Description

In this article, we describe how we use classroom phenomena to help fifth grade students develop testable questions and productive investigations. Engaging students in observing and seeking to explain a classroom decomposition chamber has helped them to engage more successfully in the science and engineering practices (SEPs) of asking questions, planning and carrying out investigations, and constructing explanations.

Ten Years of Three-Dimensional Science and Its Implementation in the Secondary Classroom: A Scoping Review

In the decade following the release of the Next-Generation Science Standards in the United States, many efforts have occurred to reform K-12 science teaching. While not all states have adopted NGSS, 48 of 50 have adopted standards that are consistent with the underlying philosophy and research base of NGSS: three-dimensional (3D) science. This scoping review explores the research activity on classroom implementation of 3D Science in secondary schools in the US.

Author/Presenter

Clara M. Smith

Heather M. Leary

Jamie L. Jensen

Rebecca L. Sansom

Lead Organization(s)
Year
2024
Short Description

In the decade following the release of the Next-Generation Science Standards in the United States, many efforts have occurred to reform K-12 science teaching. While not all states have adopted NGSS, 48 of 50 have adopted standards that are consistent with the underlying philosophy and research base of NGSS: three-dimensional (3D) science. This scoping review explores the research activity on classroom implementation of 3D Science in secondary schools in the US.

Integrating the Plate Tectonic and Rock Genesis Systems for Secondary School Students

This paper describes how plate tectonics and rock genesis, two topics that are typically addressed separately in secondary Earth science classes, can be taught together as an integrated system. We define the TecRocks Reasoning Framework, developed to support student reasoning about rock formation situated in the context of plate tectonics. We also explain how we leveraged the framework in the designs of a new curriculum, interactive computer simulation, and assessment instrument. We show how the instrument was used to evaluate the curriculum, which included the computer simulation.

Author/Presenter

Amy Pallant

Christopher Lore

Hee-Sun Lee

Stephanie Seevers

Trudi Lord

Lead Organization(s)
Year
2024
Short Description

This paper describes how plate tectonics and rock genesis, two topics that are typically addressed separately in secondary Earth science classes, can be taught together as an integrated system.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

The Design and Implementation of a Bayesian Data Analysis Lesson for Pre-Service Mathematics and Science Teachers

With the rise of the popularity of Bayesian methods and accessible computer software, teaching and learning about Bayesian methods are expanding. However, most educational opportunities are geared toward statistics and data science students and are less available in the broader STEM fields. In addition, there are fewer opportunities at the K-12 level. With the indirect aim of introducing Bayesian methods at the K-12 level, we have developed a Bayesian data analysis activity and implemented it with 35 mathematics and science pre-service teachers.

Author/Presenter

Mine Dogucu

Sibel Kazak

Joshua M. Rosenberg

Lead Organization(s)
Year
2024
Short Description

With the rise of the popularity of Bayesian methods and accessible computer software, teaching and learning about Bayesian methods are expanding. However, most educational opportunities are geared toward statistics and data science students and are less available in the broader STEM fields. In addition, there are fewer opportunities at the K-12 level. With the indirect aim of introducing Bayesian methods at the K-12 level, we have developed a Bayesian data analysis activity and implemented it with 35 mathematics and science pre-service teachers. In this article, we describe the activity, the web app supporting the activity, and pre-service teachers’ perceptions of the activity.

Teacher Educators’ Use of Formative Feedback During Preservice Teachers’ Simulated Teaching Experiences in Mathematics and Science

The purpose of this research study was to identify how teacher educators (TEs) attend to and use formative feedback as they work to support preservice teachers’ (PSTs’) learning. The formative feedback was provided to the TEs as part of recurring instructional cycles within their elementary mathematics or science methods course. In these instructional cycles, their PSTs prepared for, engaged in, and reflected on their ability to facilitate argumentation-focused discussions in a simulated classroom.

Author/Presenter

Jamie N. Mikeska

Heather Howell

Devon Kinsey

Lead Organization(s)
Year
2024
Short Description

The purpose of this research study was to identify how teacher educators (TEs) attend to and use formative feedback as they work to support preservice teachers’ (PSTs’) learning. The formative feedback was provided to the TEs as part of recurring instructional cycles within their elementary mathematics or science methods course. In these instructional cycles, their PSTs prepared for, engaged in, and reflected on their ability to facilitate argumentation-focused discussions in a simulated classroom. After each cycle, the TEs received formative information about their PSTs’ discussion performance in the form of a feedback report and a scoring report.

Values Reflected in Energy-Related Physics Concepts

Gray, K. E. & Scherr, R. E. (2025). Values reflected in energy-related physics concepts. The Physics Teacher, 63, 240–242. https://doi.org/10.1119/5.0137442

Author/Presenter

Kara E. Gray

Rachel E. Scherr

Year
2025
Short Description

Physics has the reputation of being purely about nature, not about people or culture. Physics concepts such as time, space, and mass are often considered to be independent of sociopolitical concepts such as democracy and capitalism. However, physics concepts are not “out there” in the universe, free of cultural values: rather, they are created and sustained by people in specific times and places, for the purpose of addressing particular social needs and empowering particular people.

Teacher Talk Supporting Student Progressive Discourse in Science

Student participation in science discourse requires multiple levels of support through tools such as curricular materials, as well as teacher talk. The actions of the teacher can provide opportunities for students to engage in disciplinary science talk. The norms associated with this talk can be used to define what students sound like when engaged in authentic science talk. However, often talk moves are employed in service of in-the-moment tasks rather than development of disciplinary talk norms.

Author/Presenter

Kraig A. Wray

Scott McDonald

Year
2025
Short Description

For this study, we focused on the Ambitious Science Teaching–based teacher talk engaged in by two middle school science teachers to support student sensemaking regarding a phenomenon-based science unit with embedded data visualization and simulation software over the course of a 2-week teaching unit. This descriptive case study identifies how differences in the purpose of questioning impacts the patterns of teacher talk regarding establishing norms in support of the norms of progressive discourse.