Cadre-Admin

Western Michigan University (WMU)
06/15/2020

This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts, and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level. This work will support advances in research and evaluation methodologies that will enable researchers to design more rigorous and comprehensive evaluations of STEM interventions and improve the accuracy of statistical power calculations.

University of Illinois at Chicago (UIC)
10/01/2013

The overarching goal of this project is to develop innovative instructional resources and professional development to support middle grades teachers in meeting the challenges set by college- and career-ready standards for students' learning of algebra.

Boise State University
07/01/2019

This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.

University of Illinois at Chicago (UIC)
07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

University of Chicago (U of C)
07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

University of Delaware (UD)
09/01/2021

This project explores the mechanisms by which teachers translate what they learn from professional development into their teaching practice. The goal of this project is to study how the knowledge and skills teachers acquire during professional development (PD) translate into more conceptually oriented mathematics teaching and, in turn, into increased student learning.

Boise State University
09/01/2023

This project establishes a statewide teacher-researcher alliance of mathematics teachers and teacher leaders in Idaho, who will work with teacher educators at two universities with expertise in professional development and school-based research. The research focuses on two research-based strategies for improving students’ mathematics achievement. The first, Explicit Attention to Concepts, draws students’ attention specifically to the meaning of mathematical ideas while making connections between different ways to represent the content. The second, Students’ Opportunities to Struggle, helps students make sense of graspable new concepts through supported problem solving with peers, highlighting ways to overcome confusion, stimulate personal sense-making, build perseverance, and promote openness to challenge.

Boise State University
09/01/2023

This project establishes a statewide teacher-researcher alliance of mathematics teachers and teacher leaders in Idaho, who will work with teacher educators at two universities with expertise in professional development and school-based research. The research focuses on two research-based strategies for improving students’ mathematics achievement. The first, Explicit Attention to Concepts, draws students’ attention specifically to the meaning of mathematical ideas while making connections between different ways to represent the content. The second, Students’ Opportunities to Struggle, helps students make sense of graspable new concepts through supported problem solving with peers, highlighting ways to overcome confusion, stimulate personal sense-making, build perseverance, and promote openness to challenge.

University of Michigan - Ann Arbor
06/15/2014

The overarching goal of this RAPID project is to contribute to the national goal of improving students' mathematical proficiency by providing information and guidance to mathematics education practitioners and scholars to support a sharpened focus on formative assessment. The project produces, analyzes, and makes available to the field timely information regarding the views and practices of mathematics teacher educators and professional development specialists regarding formative assessment early in the enactment of ambitious standards in mathematics.

University of California, Irvine (UC Irvine)
10/01/2016

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Vanderbilt University
10/01/2016

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

University of California, Riverside
10/01/2016

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

University of Washington (UW)
10/01/2016

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

BSCS
07/01/2020

This project will study the aspects of genetics instruction that affect students' beliefs in neurogenetic essentialism, which is implicated in lowering girls' sense of STEM abilities, feeling of belonging in STEM classes, and interest in pursuing further education in STEM fields. The goal of the project is to answer important questions about how to teach genetics at the high school level in a manner that is scientifically accurate but does not have these detrimental side effects.

The University of Texas at Austin
07/01/2020

This project will study the aspects of genetics instruction that affect students' beliefs in neurogenetic essentialism, which is implicated in lowering girls' sense of STEM abilities, feeling of belonging in STEM classes, and interest in pursuing further education in STEM fields. The goal of the project is to answer important questions about how to teach genetics at the high school level in a manner that is scientifically accurate but does not have these detrimental side effects.

Emory University
07/15/2020

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

The University of Texas at Austin
02/01/2024

K-12 teachers are a critical resource for promoting equitable STEM achievement and attainment. Experimental research, however, rarely identifies specific, transferable STEM instructional practices, because STEM education research has typically implemented student-level randomization far more than it has implemented teacher-level randomization. A major barrier limiting scientific progress is the lack of a large-scale trialing infrastructure that can support teacher-level randomization and experimentation, given the logistical constraints of recruiting multiple sites and successfully randomizing at the teacher or classroom level. This Midscale Research Infrastructure Incubator will launch a two-year, accelerated process to address these challenges and develop a consensus plan for a STEM-teacher-focused trialing platform.

The University of Texas at Austin
02/01/2024

K-12 teachers are a critical resource for promoting equitable STEM achievement and attainment. Experimental research, however, rarely identifies specific, transferable STEM instructional practices, because STEM education research has typically implemented student-level randomization far more than it has implemented teacher-level randomization. A major barrier limiting scientific progress is the lack of a large-scale trialing infrastructure that can support teacher-level randomization and experimentation, given the logistical constraints of recruiting multiple sites and successfully randomizing at the teacher or classroom level. This Midscale Research Infrastructure Incubator will launch a two-year, accelerated process to address these challenges and develop a consensus plan for a STEM-teacher-focused trialing platform.

American Institutes for Research (AIR)
10/01/2024

Staying up to date on new research findings is an increasingly daunting task for researchers, with scientific literature doubling roughly every 15 to 20 years. Synthesis researchers, too, face growing resource constraints as the size of extant literatures grow. To help mitigate associated challenges, this project will build the foundation and collaborations for using the latest advances in Artificial Intelligence (AI) to transform research synthesis in STEM education. This infrastructure will transform the speed and scale of research syntheses, while also democratizing access to the resources needed to conduct high-quality syntheses and spurring advances in broader researcher ecosystems.

University of Illinois at Urbana-Champaign
09/01/2016

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience. The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students through a virtual resource center to help develop systematic processes for interdisciplinary thinking about large societal problems, especially those at the nexus of food, energy, and water.