This is an exploratory study to identify critical aspects of effective science formative assessment (FA) practices for English Language Learners (ELLs), and the contextual factors influencing such practices. FA, in the context of the study, is viewed as a process contributing to the science learning of ELLs, as opposed to the administration of discrete sets of instruments to collect data from students. The study targets Spanish-speaking, elementary and middle school students.
Projects
This is an exploratory study to identify critical aspects of effective science formative assessment (FA) practices for English Language Learners (ELLs), and the contextual factors influencing such practices. FA, in the context of the study, is viewed as a process contributing to the science learning of ELLs, as opposed to the administration of discrete sets of instruments to collect data from students. The study targets Spanish-speaking, elementary and middle school students.
The purpose of this project is to further develop, refine, and evaluate a research-based STEM learning tool (i.e. block play) that tests theories of mathematical learning. The first objective is to empirically evaluate the impacts of different types of block play on children’s mathematics. The second objective is to evaluate the extent to which children’s mathematical language (spatial and quantitative), spatial skills, and executive function are mechanisms that link block play with children’s mathematical learning. Results from this study will contribute to the theoretical understanding of how and why block play may influence the development of early mathematics, a key component of STEM and school readiness, and will advance the research base about low-cost, feasible, and effective strategies for improving children's mathematics learning.
This research synthesis study reviews the effects of professional learning interventions and will advance STEM educators' understanding of the critically important relationships among teacher professional learning (PL), teacher knowledge and practice, and average student effects. Understanding these relationships will allow the field to design better PL experiences for teachers that truly benefit student learning.
This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics, which is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning.
The project is an exploratory, qualitative case study of a mathematics Lesson Study group for 12 beginning mathematics teachers working in high-poverty middle schools in Brooklyn. The project's Lesson Study model employs social semiotics to examine the intersection between language and learning in mathematics classrooms. Additionally, on-site Lesson Study groups will also be launched in some participating schools.
There is a need for resources for teacher education programs to help pre-service teachers learn about equitable mathematics approaches to teaching and learning. This project will develop modules, resources, and tools for exploring how teachers' understanding of equity changes from their last year of the preparation program into their first year of teaching. The tools and resources can be shared with other teacher education programs.
There is a need for resources for teacher education programs to help pre-service teachers learn about equitable mathematics approaches to teaching and learning. This project will develop modules, resources, and tools for exploring how teachers' understanding of equity changes from their last year of the preparation program into their first year of teaching. The tools and resources can be shared with other teacher education programs.
There is a need for resources for teacher education programs to help pre-service teachers learn about equitable mathematics approaches to teaching and learning. This project will develop modules, resources, and tools for exploring how teachers' understanding of equity changes from their last year of the preparation program into their first year of teaching. The tools and resources can be shared with other teacher education programs.
This project will (1) identify the characteristics and needs of college-level target learners and their instructors with respect to evolution, (2) articulate the components for expanding the Understanding Evolution (UE) site to include an Undergraduate Lounge in which students and instructors will be able to access a variety of evolution resources, (3) develop a strategic plan for increasing awareness of UE, and (4) develop a strategic plan for maintenance and continued growth of the site.
Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.
This project will develop, enact, and study a critical climate technology journalism curriculum to support multilingual sixth grade students’ knowledge and practices in engineering. Synthesizing expertise in climate technology, communication, and multilingual education, the project will engage students in investigating, designing, and communicating critical engineering knowledge about community-based technological systems. Students will learn engineering as they construct and convey messages about climate technology in their community for an audience of family members, community groups, and civic leaders.
Teacher professional learning is a critical part of the mathematics education landscape. For decades, professional learning has been the primary strategy for developing the skills of the teaching workforce and changing how teachers interact with students in classrooms around academic content. Professional learning also can be expensive for districts, both financially and in terms of teacher time. Given these investments, most school leaders wish to spend their professional development dollars efficiently, making decisions about professional learning design that maximize teacher and student learning. However, despite more than two decades of rigorous research on professional learning programs, practitioners have little causal evidence on which professional learning design features work to accelerate teacher learning. This project seeks to identify features of teacher professional learning experiences that lead to better mathematics outcomes for both teachers and students.
This project will provide evidence on how school, classroom, teacher, and student factors shape elementary school science learning trajectories for English learners (ELs). The project will broaden ELs’ participation in STEM learning by investigating how individual, classroom, and school level situations such as instructional practices, learning environments, and characteristics of school personnel relate to EL elementary school science learning.
This project will improve STEM education by studying the various strategies taught to and used by students for solving multi-digit multiplication and division to develop a more cohesive understanding of children's multiplicative reasoning. The work will also support teachers’ ability to better support students’ multiplicative reasoning strategies via professional development videos that help them learn about students’ strategies.
In this project, investigators from the University of North Dakota develop, evaluate, and implement an on-going, collaborative professional development program designed to support teachers in teaching engineering design to 5th-8th grade students in rural and Native American communities.
This project is assessing the potential value and feasibility of developing and implementing content standards for K-12 engineering education. The project is reviewing existing efforts to define what students should know; identifying elements of existing standards for related content areas that could link to engineering; considering how purposes for engineering education might affect content and implementation of standards; and suggesting changes to policies, programs, and practices necessary to develop and implement engineering standards.
This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.
This research study examines the potential of integrating student-driven descriptive investigations of complex multivariate civic datasets into middle school social studies classrooms. It uses a collaborative co-design process to develop data-rich experiences for the social studies classroom crafted to 1) deepen students' data literacy, 2) develop students' sense of efficacy in working with civic data sets, and 3) create learning experiences that connect data to local problems that have meaning for students and their communities.
This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.
This project investigates how high school students' understanding about design thinking compares to that of experienced practitioners and whether participation in a multiyear sequence of courses focused on engineering correlates with changes in design thinking. The project builds upon the Standards for Technological Literacy and courses developed at the University of Colorado and the University of Maryland, Baltimore County.
This project will explore how children in grades K-2 understand visual representations of algebraic concepts. For instance, children might create tables or graphs to organize information about the relationship between two quantities. They might use graphs and diagrams to explain their mathematical thinking and develop their understanding of relationships in numbers and operations. The project will use data gathered in K-2 classrooms and via interviews with children to describe their use of the visual representations. This exploratory project aims to develop learning trajectories as cognitive models of how children in grades K–2 understand visual representations for algebraic relationships.
In this project, researchers are working with 4th and 5th grade teachers to improve their mathematics instruction by experimenting with different ways to implement the MQI model of professional development. The professional development experiences are intentionally aligned with the Mathematical Quality of Instruction (MQI) observation instrument. This research can inform models of professional development by providing more information about various ways that the same model of professional development can be implemented.
This research study focuses on the impact of different teacher preparation and induction models, as well as on the quality and persistence of secondary science teachers. Combining the strengths of case-based research with a quasi-experimental design this study will follow 120 secondary science teachers for three years from four different and well characterized preservice - induction programs.
Research Experiences for Teachers (RET) programs have been designed to give teachers authentic scientific inquiry experience, but their results have remained largely unexamined. This research focuses on analyzing RET programs through description of their essential features, their efficacy in fostering teachers’ understanding and enactment of inquiry, their interaction with the personal characteristics of participating teachers, and the influence of teaching through inquiry on student learning in science.