Projects

06/01/2024

This five-year participatory research project follows students from transitional kindergarten to third grade to understand whether and how Number Talks (i.e., ten-to-fifteen-minute math discussions where students mentally solve mathematics problems and then come together as a class to share their mathematical reasoning) can empower students to develop productive mathematical identities while strengthening their number sense. As part of this work, grade level teams of teachers will investigate how to leverage the knowledge, skills, and resources students bring with them to mathematics class in order to spark productive mathematical identity development.

07/01/2020

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

07/15/2012

The project at Spelman College includes activities that develop computational thinking and encourage middle school, African-American girls to consider careers in computer science. Over a three-year period, the girls attend summer camp sessions of two weeks where they learn to design interactive games. Experts in Computational Algorithmic Thinking as well as undergraduate, computer science majors at Spelman College guide the middle-school students in their design of games and exploration of related STEM careers.

06/01/2018

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

09/01/2025

Preschool and kindergarten-aged children are still developing the skills needed to reflect on and manage their own thinking, a process often referred to as metacognition. Without strategic support from their teachers, young children may struggle to make sense of inquiry-based science activities and possibly form enduring misconceptions that may hamper future science learning. Yet, many teachers are unfamiliar with the metacognitive processes or how to intentionally facilitate their development. This project explores both how to improve early childhood teachers' understanding of metacognition and develop strategies to guide teachers in using language and feedback to more effectively support emerging metacognition and science learning in young children.

08/15/2010

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

02/01/2020

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference and to use these tools to generate knowledge about the natural world.

03/15/2010

The aim of this project is to explore the hypothesis that a curricular focus on quantitative reasoning in middle grades mathematics can enhance development of student skill and understanding about mathematical proof. The project is addressing that hypothesis through a series of studies that include small group teaching experiments with students, professional development work with teachers, and classroom field tests of curricular units that connect quantitative reasoning and proof in algebra.

07/01/2024

This project partners with a mathematics department at a public middle school to co-design, analyze, and improve teachers’ translanguaging pedagogies, that is pedagogies that draw on students’ full linguistic repertoires as resources for their learning. This project will investigate how teachers make sense of and enact translanguaging pedagogies, how translanguaging pedagogies shape students’ mathematical experiences and learning opportunities, and how teachers’ learning of translanguaging spaces can be supported.

08/01/2008

This project integrates educational and research activities with the ultimate goal of improving the mathematics education of students in high poverty, urban high schools. The project focuses on developing secondary mathematics teachers‘ capacity for implementing culturally relevant mathematics pedagogy (CuReMaP). CuReMaP consists of teaching mathematics for understanding; centering mathematics instruction on students; and providing opportunities for students to develop critical consciousness about and with mathematics.

09/01/2022

This project considers how teachers’ engagement in scientific sensemaking as an opportunity for teachers’ learning to support more expansive science learning environments. It seeks to address two ongoing challenges in science teacher education: the need for teachers to learn (1) to recognize, value, and integrate students’ diverse ways of knowing, communicating, and relating with one another and phenomena and (2) to acknowledge and disrupt restrictive narratives that shape what counts as science in schools and who is seen as a scientist. This project will provide new models for science teacher education to engage teachers in expansive scientific sensemaking, seeking to develop more humanizing relationships between teachers, students, and science. More broadly, the project will produce a new structure for professional learning and resources for supporting more heterogeneous and equitable forms of science in teacher education. 

04/01/2010

This research project aims to explore and understand how geographic information systems (GIS) can be used to promote and teach spatial thinking and social science inquiry skills. It addresses the research question: What are effective teaching practices using GIS to teach spatial thinking and social science inquiry in middle-school and undergraduate classrooms? This program will study the effectiveness of teaching practices for social science instruction with GIS in urban public schools for specific learning objectives.

08/15/2010

The research and educational activities of this project focus on advancing the field in the area of fraction operation algorithm development. The goal of this research is to identify core mathematical teaching practices that engage and support students in algorithmic thinking associated with fraction operations. The educational product of this work will be written educational materials that can be used to support the general population of teachers in this domain.

03/15/2022

This project supports school-based science teachers and students in conducting community-based science research on the causes and effects of extreme heat/urban islands in racially and ethnically diverse communities. Teachers will participate in professional learning experiences that support their development of content knowledge, scientific research practices, and critical pedagogies needed to design and implement research projects in their classroom. Students will identify locally-relevant issues related to this phenomenon, conduct investigations to explore the issue, share their findings through arts-based community narratives, and advocate for change. This project will broaden access to empowering youth-centered approaches that support learning and identity construction in science.

06/01/2020

This project characterizes and analyses the developing mathematical identities of Latinx students transitioning from elementary to middle grades mathematics. The central hypothesis of this project is that elementary Latino students' stories can identify how race and language are influential to their mathematical identities and how school and classroom practices may perpetuate inequities.

07/01/2022

This project will develop and investigate mathematics language routines focused on data science topics in middle and high school. The study will investigate teachers’ use of mathematics language routines and a professional development model to support teachers’ learning. The educational integration plan in the project will build mathematics teacher expertise and create video cases to support teacher professional development.

12/15/2012

This CAREER proposal has four objectives: 1) examine the nature of mathematics teachers' learning opportunities for instructional improvement, 2) examine how work contexts influence the quality of teacher learning opportunities, 3) examine the impact of teacher learning opportunities on changes in student mathematics achievement over four years, and 4) work with district and school administrators to promote instructional improvement and student achievement by effectively providing learning opportunities to mathematics teachers.

07/01/2019

This project addresses a gap between vision and implementation of state science standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations.

09/01/2007

Researchers are developing a practice-based curriculum for the professional education of preservice and practicing secondary mathematics teachers that focuses on reasoning and proving; has narrative cases as a central component; and supports the development of knowledge of mathematics needed for teaching. This curriculum is comprised of eight constellations of activities that focus on key aspects of reasoning and proving such as identifying patterns; making conjectures; providing proofs; and providing non-proof arguments.

10/01/2009

The Conference Board for the Mathematical Sciences (CBMS) is organizing and hosting a National Forum on the Content and Assessment of School Mathematics. The conference is intended to provide an opportunity for policy makers and the broad mathematics education community to provide input into the standards development process. CBMS will produce a white paper on the key issues.

09/15/2010

This project is organizing and hosting a National Forum on Content-Based Professional Development for Teachers of Mathematics. Expanding on work begun at two previous CBMS Forums, this third forum will provide the participants with a better understanding of the features of high quality content-based professional development and increase the number of college and university mathematics departments who partner with state departments and local school districts to provide professional development to working teachers.

09/01/2008

This project establishes a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The research combines high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. It will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology.

07/01/2004

This project provides middle school students and teachers access to live scientific data from the Center for Embedded Networked Sensing, and curriculum modules built around sensor networks that target core life science content and inquiry standards. This Web-based architecture allows students from ethnically diverse urban schools, typically underserved by technological innovation, to explore the same data that scientists use, and develops and evaluates fading technological and pedagogical scaffolds for inquiry as students gain competence.

09/01/2008

This project performs integrated research on emergent materials and phenomena in magnetoelectronics. The aim of the research activities is to advance understanding of the emergent materials and phenomena and to develop highly sophisticated experimental and theoretical tools required to study them. Project activities include an innovative education research program aimed at cognition of materials science concepts, K-12 outreach and visitation programs, undergraduate research programs, and graduate-education enhancement programs.

09/15/2008

In its first five years, this project established a durable and vibrant learning community of high school teachers, high school students, university students, scientists, faculty, and associated stake-holders that continues to attract science and math students, using the project’s cutting-edge science and advanced cyberinfrastructure as compelling elements of study. This project continues by providing an education and research partnership derived from basic research in particle physics, grid computing, and advanced networking.