This project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices.
Projects
This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.
This project will develop and test a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts.
This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, an educational virtual word in which students can engage in a wide variety of science activities and games.
This project addresses biology teachers and students at the high school level, responding to the exponential increases occurring in biology knowledge today and the need for students to understand the experimental basis behind biology concepts. The project studies the feasibility of engaging students in an environment where they can learn firsthand how science knowledge develops in the fields of bioinformatics and DNA science by performing collaborative, simulated experiments to solve open-ended problems.
The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.
The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.
This project scales and further tests the Target Inquiry professional development model. The model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers, and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students.
This project investigates how to support sustained engagement in computational modeling in middle school classrooms in two ways: 1) Design and develop an accessible modeling toolkit and accompanying thematically linked curricular units; and, 2) Examine how this toolkit and curriculum enable students to become sophisticated modelers and integrate modeling with other scientific practices such as physical experimentation and argumentation.
This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.
This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.
This project is an innovative exploratory research study focused on developing a high school environmental engineering curriculum that addresses the challenges posed by climate change. The curriculum follows a model-validate-iterate design paradigm, where students model dynamic real-world systems, validate their models using data, and create multiple iterations to explore changes in the system over time. The project aims to cultivate a new generation of environmental engineers who possess the necessary skills to analyze complex systems, collaborate with diverse communities, and develop creative solutions.
This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.
This exploratory study involves a long-term partnership between the principal investigator (PI) and a middle school teacher and her students. Two major goals of the study are to describe how students learn to collaborate with one another over time to make sense of mathematics, and how students and their teacher negotiate what constitutes equitable collaboration, with African American students' perspectives being prioritized. In this way, it adds to this body of literature by: a) prioritizing African American students? perspectives on collaboration from the outset; b) describing, longitudinally, how students learn to collaborate; c) documenting students' mathematics learning within the context of small groups; and d) developing a set of resources for teacher educators, teachers, and students that focus on equitable groupwork.
This project will develop and study a curriculum and app that support computational thinking (CT) in a high school biology unit. The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply CT principles.
The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices. Leveraging the promise of virtual learning companions, the project will collect datasets of collaborative learning for computer science in diverse upper elementary school classrooms; design, develop, and iteratively refine its intelligent virtual learning companions; and generate research findings and evidence about how children collaborate in computer science learning and how best to support their collaboration with intelligent virtual learning companions.
This project engages children in classrooms across the country in an authentic investigation of Devonian fossils. Goals include supporting children in the use of evidence in constructing explanations of natural phenomena, and motivating culturally and linguistically diverse groups of children to engage in learning science. Deliverables include development and testing of an interactive website where children learn how to identify the fossils they find and add their own data to an emerging database.
This study investigates the sustainability of the College Ambition Program (CAP) that has demonstrated promise in increasing the number of students who attend postsecondary colleges or universities. The CAP is a whole school high school intervention that promotes a college-going culture in which all students are provided resources that encourage postsecondary attendance with a special emphasis on STEM.
This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.
This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.
This project is developing a week-long unit of activities focused on the cryosphere, implementing the activities with students, and studying the activities’ effectiveness. The overarching goals of this project are to build a sequence of scaffolded investigations that will help students more fully understand the cryosphere; and investigate the effectiveness of the sequence of and investigations at helping students understand how and why a component of the Earth system varies over time.
This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.
This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.
This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.
This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources, and how the resources then relate to kindergartners mathematics learning.