This project aims to advance the preparation of preservice teachers in middle school mathematics, specifically on the topic of proportionality, a centrally important and difficult topic in middle school mathematics that is essential to students’ later success in algebra. To address the need for a workforce of high-quality teachers to teach this mathematics, the project is developing a digital text that could be widely used to communicate the unique transitional nature of middle school mathematics.
Projects
The Data Games project has developed software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and test their strategies in another round of the game.
This project addresses the challenge “How can promising innovations be successfully implemented, sustained, and scaled in schools and districts in a cost effective manner?” Project partners are researching the expansion of an established preparation and induction support program for K-5 mathematics specialists into rural school systems.
Founded on ethnomathematics research findings, this project aims to increase the mathematics learning of first-, fourth-, and seventh-grade elementary school Micronesian students. Plans are to develop and field-test culturally and linguistically sensitive grade-level curriculum units in specific mathematics topics, such as number and counting, division of whole numbers and fractions, and elements of geometry, focused on the indigenous mathematics learning experiences of eight distinct islands in the Pacific region.
This research and development project provides resources for ninth-grade mathematics students and teachers by developing, piloting, and field-testing intervention modules designed as supplementary materials for Algebra 1 classes (e.g., double-period algebra). Rather than developing isolated skills and reviewing particular topics, these materials aim to foster the development of mathematical habits of mind—in particular, the algebraic habit of abstracting from calculations, a key unifying idea in the transition from arithmetic to algebra.
This project examines the effect of four different types of induction programs (district-based, e-mentoring, university-based, intern programs) on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.
This project builds and tests applications tied to the school curriculum that integrate the sciences with mathematics, computational thinking, reading and writing in elementary schools. The investigative core of the project is to determine how to best integrate computing across the curriculum in such a way as to support STEM learning and lead more urban children to STEM career paths.
This project is developing, designing, and testing materials for professional development leaders (e.g., teacher educators, district mathematics specialists, secondary mathematic department chairs) to use in their work with secondary mathematics teachers. The aim is to help those teachers analyze the discourse patterns of their own classrooms and improve their skills in creating discourse patterns that emphasize high-level mathematical explanation, justification, and argumentation.
The project aims to: (1) study resources and strategies for teachers that will facilitate participation of 3rd grade Latino English Language Learners (ELLs) in the mathematics classrooms; (2) develop related teacher professional development (PD) materials; and (3) integrate research and teaching activities. The basic research question is: How can 3rd grade teachers facilitate better mathematics instruction for ELLs?
Investigations in Cyber-enabled Education (ICE) strives to provide a professional development design framework for enhancing teacher ability to provide science, technology, and math (STM) instruction for secondary students. Exploratory research will clarify ICE framework constructs and gather empirical evidence to form the basis of anticipated further research into the question: Under what circumstances can cyber-enabled collaboration between STM scientists and educators enhance teacher ability to provide STM education?
This project will (1) identify the characteristics and needs of college-level target learners and their instructors with respect to evolution, (2) articulate the components for expanding the Understanding Evolution (UE) site to include an Undergraduate Lounge in which students and instructors will be able to access a variety of evolution resources, (3) develop a strategic plan for increasing awareness of UE, and (4) develop a strategic plan for maintenance and continued growth of the site.
This project is exploring the introduction of a nanoscience curriculum into high schools. It is creating and studying a professional development model based on two products, the NanoTeach Teacher's Guide and the NanoTeach Facilitator's Guide. The NanoTeach Teacher's guide is being designed for self study by teachers (low treatment group) and for use in a facilitated development model (high treatment group). The NanoTeach Facilitator's Guide outlines the professional development experiences and provides guidance for facilitators.
This project is working to create a cyber infrastructure that supports development and documentation of additional interventions for teacher professional development using the video collection, as well as other videos that might be added in the future by teacher educators or researchers, including those working in other STEM domains.
This project is developing and conducting research on the Cohort Model for addressing the mathematics education of students that perform in the bottom quartile on state and district tests. The predicted outcome is that most students will remain in the cohort for all four years and that almost all of those who do will perform well enough on college entrance exams to be admitted and will test out of remedial mathematics courses.
The SAVE Science project is creating an innovative system using immersive virtual environments for evaluating learning in science, consistent with research- and policy-based recommendations for science learning focused around the big ideas of science content and inquiry for middle school years. Motivation for this comes not only from best practices as outlined in the National Science Education Standards and AAAS' Project 2061, but also from the declining interest and confidence of today's student in science.
This project is (1) conducting a qualitative study on the way facilitators use Math for All (MFA), an NSF-supported set of professional development materials for teachers who teach elementary school students with disabilities; (2) developing resources based on that study for teacher leaders and other facilitators of professional development; and (3) conducting fieldtests of the resources to examine their usefulness and impact.
This project aims to develop, pilot, and evaluate a model of instruction that advances the scientific literacy of high school students by involving them in science journalism, and to develop research tools for assessing scientific literacy and engagement. We view scientific literacy as public understanding of and engagement with science and technology, better enabling people to make informed science-related decisions in their personal lives, and participate in science-related democratic debates in public life.
Effective Science Teaching for English Language Learners (ESTELL): A Pre-Service Teacher Professional Development Research Project project is funded by the National Science Foundation DR-K-12 Discovery Research Program. The ESTELL project focuses on improving the science teaching and learning of K-6 linguistic minority students who are currently underserved in K-6 education through improving the pre-service education of elementary school teachers.
This project is writing and researching a book supporting grade 5-8 students in scientific explanations and arguments. The book provides written and video examples from a variety of contexts in terms of content and diversity of students. The book and accompanying facilitator materials also provide different teacher instructional strategies for supporting students. The research focuses on how the book and accompanying professional development impact teachers' beliefs, pedagogical content knowledge and classroom practice.
The project has had three major areas of focus: (1) Offering professional development to help elementary and 6th grade teachers become more responsive teachers, attending and responding to their students' ideas and reasoning; (2) Developing web-based resources (both curriculum and case studies) to promote responsive teaching in science; and (3) research how both teachers and students progress in their ability to engage in science inquiry.
The study includes two and a half years of preparation and support for all the mathematics instructional leaders (ILs) within a large urban school district with a substantial minority student enrollment. These ILs will implement the Problem-Solving Cycle model with the mathematics teachers in their schools. Researchers will analyze the preparation and support that ILs need, the quality of their implementation, and the impact of the PD process on ILs, teachers, and students.
This project is developing, piloting, and implementing online professional development in support of inquiry, focusing on facilitation of student research. The goal is to determine what types of Web-based experiences and resources most effectively support middle school teachers in overcoming the substantial hurdles inherent in enabling students to design and conduct their own scientific experiments. The project creates and tests a series of Web-based professional development experiences for 7th and 8th grade teachers.
The Coaching Cycle project is creating an online course for K–8 mathematics instructional coaches. The project targets coaches in rural areas and small schools who do not have access to regular district-wide professional development. It provides training in the skills needed for effective instructional coaching in mathematics by using artifacts collected by practicing coaches to engage course participants in the practice of coaching skills.
This project implemented a facets-of-thinking perspective to design tools and practices to improve high school chemistry teachers' formative assessment practices. Goals are to identify and develop clusters of facets related to key chemistry concepts; develop assessment items; enhance the assessment system for administering items, reporting results, and providing teacher resource materials; develop teacher professional development and resource materials; and examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.
In response to the critical need for scholars with deep content knowledge in chemistry and the specialized training to conduct CER, this capacity building project prepares scholars whose research marries expertise in instrument design with extensive literature on chemistry misconceptions, resulting in the development of concept inventories as reliable and valid measures of student learning for use by chemistry teachers (both high school and post-secondary) and chemistry education researchers.