Projects

09/15/2009

This project provides visionary leadership to the education community by (a) identifying and analyzing the needs and opportunities for future STEM curriculum development and (b) recommending policy positions and actions by funding agencies and STEM educators regarding the development and implementation of STEM school curricula.

05/01/2008

The purposes of this conference include bringing together 150 participants from all aspects of STEM education to exchange ideas about research, curriculum, and assessment; to help teachers integrate research-based instructional strategies in their teaching; and to build sustainable collaborations between participants. It includes three days of parallel presentations and discussion followed by a two-day summer academy. A focus on research-based strategies that advance the successful participation of underrepresented groups is embedded in all activities.

09/01/2009

This project contributes to the emerging knowledge base for reform-minded middle school STEM instructional materials development through the development, field-testing, and evaluation of a prototype instructional materials module specifically designed to stimulate and sustain urban-based students’ interest in STEM. The module includes guided inquiry-oriented activities thematically linked by the standards-aligned concept of energy transfer, which highlight the fundamental processes and integrative nature of 21st century scientific investigation.

10/01/2021

CADRE is the resource network that supports researchers and developers who participate in DRK-12 projects on teaching and learning in the science, technology, engineering and mathematics disciplines. CADRE works with projects to strengthen and share methods, findings, results and products, helping to build collaboration around a strong portfolio of STEM education resources, models and technologies. CADRE raises external audiences’ awareness and understanding of the DRK-12 program, and builds new knowledge.

10/01/2013

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

09/01/2014

This project builds on prior efforts to create teaching resources for high-school Advanced Placement Statistics teachers to use an open source statistics programming language called "R" in their classrooms. The project brings together datasets from a variety of STEM domains, and will develop exercises and assessments to teach students how to program in R and learn the underlying statistics concepts.

09/15/2013

This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science.

09/15/2007

This project implemented a facets-of-thinking perspective to design tools and practices to improve high school chemistry teachers' formative assessment practices. Goals are to identify and develop clusters of facets related to key chemistry concepts; develop assessment items; enhance the assessment system for administering items, reporting results, and providing teacher resource materials; develop teacher professional development and resource materials; and examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.

09/01/2014

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

09/01/2014

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

07/15/2012

The project at Spelman College includes activities that develop computational thinking and encourage middle school, African-American girls to consider careers in computer science. Over a three-year period, the girls attend summer camp sessions of two weeks where they learn to design interactive games. Experts in Computational Algorithmic Thinking as well as undergraduate, computer science majors at Spelman College guide the middle-school students in their design of games and exploration of related STEM careers.

07/01/2020

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

09/15/2023

Online STEM credit courses have become attractive to school leaders as a way to support students who fail STEM courses in face-to-face school year settings. However, there is little research about the processes involved in how schools make decisions regarding student credit recovery. The available research focuses solely on student results and is not definitive enough to support important policy decisions at the district level. This research brings redress to this policy dilemma.

07/01/2013

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.

02/01/2020

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

06/01/2016

This project will investigate the potential benefits of interactive, dynamic visualization technologies in supporting science learning for middle school students, including ELLs. This project will identify design principles for developing such technology, develop additional ways to support student learning, and provide guidelines for professional development that can assist teachers in better serving linguistically diverse students. The project has the potential to transform traditional science instruction for all students, and to broaden their participation in science.

08/15/2008

This project conducts a systematic and empirical (both quantitative and qualitative) longitudinal study of the factors that influence students' decisions at critical junctures in the educational pipeline. The goals are too (a) broaden participation in science, technology, engineering, and math (STEM) fields and (b) improve the recruitment, retention, and success of minority undergraduate men in STEM and STEM-related fields across colleges and universities in the United States.

06/01/2020

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

09/15/2023

This project investigates the STEM teacher pipeline and examine qualifications, from teacher candidates who express interest in teaching STEM through to the eventual career paths of teachers in the workforce. In doing so, the project examines how the supply of STEM teachers has changed over time, whether the supply is adequate in meeting the needs of a changing nation, the qualifications and credentials of STEM teachers, and the implications of the STEM teacher career paths for equity and serving high needs contexts and students.

08/01/2024

Environmental issues like wildfires can serve as effective science learning contexts to promote scientific literacy and citizenship. This project will partner with teachers, teacher educators, and disciplinary experts in data science, fire ecology, public health, and environmental communication to co-design a data-driven, justice-oriented, and issue-based unit on wildfires. In the unit, student will engage in various data practices to gain insights into the issue of wildfires and how it affects their lives and communities. The project seeks to theorize how learners can leverage disciplinary knowledge and practices in environmental and data science as a foundation for making data-informed actions towards a more just and sustainable society.

07/01/2008

This project studies teaching practices in a year-long high school algebra course that integrates hand-held and other electronic devices. Of particular interest is how these technologies can support learners' capacity to efficiently and effectively draw on the distributed intelligences that technical and social networks make available. The investigation focuses on collaborative learning tasks centered on collective mathematical objects, such as functions, expressions, and coordinates that participants in a group must jointly manipulate through networked computers.

08/01/2019

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound for students with visual impairments.

02/15/2016

This project will investigate whether six urban middle schools are implementing highly effective science, technology, engineering and mathematics (STEM) programs based on factors identified through relevant research and national reports on what constitutes exemplary practices in 21st century-focused schools.

12/01/2024

STEM learning is a function of both student level and classroom level characteristics. Though research efforts often focus on the impacts of classrooms level features, much of the variation in student outcomes is at the student level. Hence it is critical to consider individual students and how their developmental systems (e.g., emotion, cognition, relational, attention, language) interact to influence learning in classroom settings. This is particularly important in developing effective models for personalized learning. To date, efforts to individualize curricula, differentiate instruction, or leverage formative assessment lack an evidence base to support innovation and impact. Tools are needed to describe individual-level learning processes and contexts that support them. The proposed network will incubate and pilot a laboratory classroom to produce real-time metrics on behavioral, neurological, physiological, cognitive, and physical data at individual student and teacher levels, reflecting the diverse dynamics of classroom experiences that co-regulate learning for all students.

10/01/2023

Teachers are extraordinarily important to student learning, but researchers have surprisingly little data about what teachers do moment-to-moment with students. What are the instructional moves and improvisational responses that characterize highly effective practice? To better understand and support U.S. K-12 STEM teachers, this Incubator project will develop a network of "tutor observatories." Tutor observatories are learning environments that record teacher engagements with students along with information about the context of the interaction. From these data, researchers will be able to gain a deeper understanding of STEM teacher practice, identify highly effective practices, and develop training data that can inform a new generation of artificially intelligent tools to support teachers and student learning.