This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The project will integrate engineering design, technology and society, electrical knowledge, and computer science to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.
Projects
This project uses green school buildings as an opportunity to involve students in STEM activities in their environment. The goal is to produce an action plan for transforming the middle school science and mathematics curriculum by rethinking the content that is taught, the ways in which students and teachers can engage effectively with that content, and the role that technology can play to ensure wide access to the data and to the new curriculum.
This project revises and tests integrated STEM modules and an accompanying professional development component that promote differentiated instruction in order to facilitate high school teachers' instruction of 21st century skills and integrated STEM content. STEM Fusion is a multi-tiered project focusing on the refinement of draft professional resources and the development of teacher skills related to differentiated instruction within integrated STEM instruction.
This project will capitalize on the STEM for All Video Showcase and extend its impact by creating a STEM for All Multiplex. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts.
This project creates materials for grades 5-8 that address and assess STEM concepts through a robotics curriculum. The curriculum addresses STEM standards through such documents as the NCTM Focal Points and the Atlas of Science Literacy. Students can use the TekBot robotics platform in three problem-based ways: building, moving, and programming. The intent is to scale up to a cyber-infrastructure that supports the national distribution and implementation of the curriculum.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This project develops and researches the academic potential of a hybrid instructional model that infuses computer simulations, modeling, and educational gaming into middle school technology education programs. These prototypical materials use 3-D simulations and educational gaming to support students’ learning of STEM content and skills through developing solutions to design challenges.
This project leverages curricular module development to design, develop, and test new cyberlearning modules that integrate multiple (circulation, respiration, and digestion) systems of the human body. The project aims to deepen science content knowledge, science inquiry skills, and model-based reasoning skills for high school biology students. The project will use simulations showing how individual systems function, how they work together, and how the integration of all three creates a dynamic and reactive biological system.
This project employs sensing technologies to help transform students' physical actions during play into a set of symbolic (computer) representations in a physics simulation and to engage the children in a developmentally appropriate and powerful form of scientific modeling. The students are in grades K–1 at UCLA's elementary school, and the intervention is based on the existing content unit on Force and Motion.
This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.
This project aims to develop, pilot, and evaluate a model of instruction that advances the scientific literacy of high school students by involving them in science journalism, and to develop research tools for assessing scientific literacy and engagement. We view scientific literacy as public understanding of and engagement with science and technology, better enabling people to make informed science-related decisions in their personal lives, and participate in science-related democratic debates in public life.
The goals of STEM instruction are to educate a populace that is scientifically and mathematically literate and who can solve real-world problems by applying science and mathematics. This exploratory project is designed to study the effectiveness of professional development focused on the integration of mathematics and science instruction, mediated by technology tools, to improve middle school teachers' ability to teach scientific inquiry and mathematical problem solving.
This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.
This study addresses the question: Does gaining admission to a selective STEM specialty school improve students' academic success on the SAT, SAT II, and Advanced Placement exams? Other portions of the investigation follow additional student outcomes, including: participation and success in STEM competitions; STEM publications; intentions for postsecondary STEM education and STEM careers; and initial postsecondary STEM education. This study seeks to inform considerations of the cost/benefit of directing resources to support such schools.
This project is focusing on the redesign of popular commercial video games to support students’ understanding of Newtonian mechanics. In support of this goal, SURGE develops and implements design principles for game-based learning environments, integrating research on conceptual change, cognitive processing-based design, and socio-cognitive scripting. These enhanced games bridge the gap between student learning in non-formal game environments and the formalized knowledge structures learned in school by leveraging and integrating the strengths of each.
The SAVE Science project is creating an innovative system using immersive virtual environments for evaluating learning in science, consistent with research- and policy-based recommendations for science learning focused around the big ideas of science content and inquiry for middle school years. Motivation for this comes not only from best practices as outlined in the National Science Education Standards and AAAS' Project 2061, but also from the declining interest and confidence of today's student in science.
This study investigates the impact of the wireless environment on high school science using a purposeful sampling of schools with high implementers. Five schools will be examined and extensive data in multiple forms will be collected on each. The project uses in-depth case studies to examine context factors and critical interactions that may influence science instructional practice in wireless high school science classrooms. The study will result in an evidence-based and theoretically-grounded professional development model.
This study examines non-cognitive factors, mindsets, cognitive factors, and strategies for learning mathematics, in the context of a MOOC combined with classroom instruction for middle grades students in mathematics. No previous mindset study has researched the impact of mindset messages within mathematics, and the proposed study will add important knowledge to this field.
The project investigates the use of robotics into early childhood education. It address two objectives: to develop and evaluate a low-cost, developmentally appropriate robotic construction kit specifically designed for early childhood education (PreK-2) and to pilot a robotics-based professional development model for early childhood educators to teach engineering and technology.
Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.
This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.
This project brings together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities.
This workshop convenes leading practitioners and scholars of innovation to collectively consider how education in the US might be reconfigured to both support and teach innovation as a core curriculum mission, with a focus on STEM education. Workshop participants identify and articulate strategies for creating and sustaining learning environments that promise the development of innovative thinking skills, behaviors and dispositions and that reward students, faculty and administrator for practicing and tuning these skills.
This project will study learning associated with elementary teachers' engagement in professional learning and elementary students' learning related to quantum science, quantum thinking, and careers. The knowledge base required for elementary teachers and students to learn quantum will be identified in order to explore and compare how elementary students and teachers conceptualize and make sense of quantum science concepts.
This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation.