EarthX is a design-based research project that supports the integration of Earth science into high school biology, chemistry, and physics courses in Baltimore City Public Schools, while also supporting the district’s transition to three-dimensional (3D), ambitious and equitable science teaching aligned with the Next Generation Science Standards (NGSS). EarthX builds on the success of the Integrating Chemistry and Earth Science (ICE) DRK-12 project, which developed innovative chemistry course curriculum materials and PD strategies, to support Earth science integration into biology and physics course curriculum development and 3D teaching. EarthX will develop, test, and refine embedded and unit assessments for all three courses, along with providing an online system for assessment administration; real-time reporting to teachers and students; and provision of data to PD leaders, administrators, and researchers for multiple purposes. Assessments will be 3D, featuring core concepts from both Earth science and the course discipline combined with a science or engineering practice and a crosscutting concept.
Projects
This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.
In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.
In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.
The overriding goal of this project is to strengthen the “T” and “E” components of STEM in high school courses taken by a majority of students. Our hypothesis is that increasing the presence of engineering and technological design at the high school level, specifically by incorporating engineering activities in high school biology and chemistry classes, will improve students’ understanding of science concepts and strengthen students’ 21st century skills more than traditional methods.
Through the integration of STEM content and literacy, this project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue.
This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers.
This project has pioneered simulation-based assessments of model-based science learning and inquiry practices for middle school physical and life science systems. The assessment suites include curriculum-embedded, formative assessments that provide immediate, individualized feedback and graduated coaching with supporting reflection activities as well as summative end-of-unit benchmark assessments. The project has documented the instructional benefits, feasibility, utility, and technical quality of the assessments with over 7,000 students and 80 teachers in four states.
This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.
This project will investigate the potential benefits of interactive, dynamic visualization technologies in supporting science learning for middle school students, including ELLs. This project will identify design principles for developing such technology, develop additional ways to support student learning, and provide guidelines for professional development that can assist teachers in better serving linguistically diverse students. The project has the potential to transform traditional science instruction for all students, and to broaden their participation in science.
This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.
The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.
This project implemented a facets-of-thinking perspective to design tools and practices to improve high school chemistry teachers' formative assessment practices. Goals are to identify and develop clusters of facets related to key chemistry concepts; develop assessment items; enhance the assessment system for administering items, reporting results, and providing teacher resource materials; develop teacher professional development and resource materials; and examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.
This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science.
This project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. The study is designed to examine and document the effect of this integrated program on the production of urban science teachers. This study will also research the impact of internships in science centers on improving classroom science teaching in urban high schools.
This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"
CISIP is a professional development program that enables English and science teachers to help students to learn content and communicate scientifically. The CISIP program: Translates How Students Learn Science in the Classroom and Common Core State Standards for student success; targets learning within a classroom discourse community that focuses on argumentation; and takes a team of science and English teachers at schools from middle level through university who collaborate.
In response to the critical need for scholars with deep content knowledge in chemistry and the specialized training to conduct CER, this capacity building project prepares scholars whose research marries expertise in instrument design with extensive literature on chemistry misconceptions, resulting in the development of concept inventories as reliable and valid measures of student learning for use by chemistry teachers (both high school and post-secondary) and chemistry education researchers.
This project is developing, validating, and evaluating computer modeling-based formative assessments to improve student learning in chemistry. Activities include developing a series of computer models related to key topics in high school chemistry, developing questions to probe student understanding of matter and energy, identifying teaching and learning resources appropriate for different levels of student conceptual understanding, and developing professional development resources on integrating formative assessments into high school chemistry courses.
This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.
This project will provide a field-based science and mathematics teacher education program that supports teaching focused on students’ affective development through culturally responsive practices. The project's teacher education program takes place over a two-year period and models how culturally responsive and affective instruction can occur in the STEM classroom to engage students.
This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.
The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).
This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).
The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.