This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.
Projects
This study will further the field's understanding of the role that science teachers play in adapting their instruction during a public health crisis, how they address emergent ideas throughout the unfolding of the pandemic, and the impacts that the pandemic has had on science teachers themselves.
This project represents a new approach to quality assessment of K-12 science and engineering learning experiences. By updating and expanding the Dimensions of Success (DoS) observation tool initially established for informal science learning settings to middle school science and engineering classrooms (DoS-MSSE), the project will create and implement a sustainable and scalable system of support for teachers who are learning how to implement the Next Generation Science Standards (NGSS) Framework for K-12 effectively and equitably.
As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.
This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.
This project will develop and test a professional development program designed for school district science coordinators by examining impacts of participating coordinators on science teachers and their students.
This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.
This project will study if, how, and under what circumstances an integration of literacy strategies, hands-on inquiry-based investigations, and planetarium experiences supports the development of science practices (noticing, recognizing change, making predictions, and constructing explanations) in early elementary level students. The project will generate knowledge about how astronomy-focused storybooks, hands-on investigations, and planetarium experiences can be integrated to develop age-appropriate science practices in very young children.
This project proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students.
This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events.
This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.
This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.
This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.
This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.
This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.
The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.
This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"
This project provides a virtual environment in which high school physics students can engage in the cutting edge science of studying exoplanets. Using online telescopes and learning software, students gain a deeper understanding of science inquiry, including reasoning from models, gathering assessing, and interpreting authentic data, and drawing conclusions from multiple line of evidence. The research advances our understanding of ways to increase students' knowledge of data literacy.
This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.
The American Museum of Natural History in New York City, in partnership with New York University, and in collaboration with five high-needs schools, is developing, implementing, and researching a five-year pilot Master of Arts in Teaching (MAT) program in Earth Science. The program is delivered by the Museum's scientific and education teams and its evaluation covers aspects of the program from recruitment to first year of teaching.
The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.
This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.
This project researches the use of cyberinfrastructure to implement a strategy for using online telescopes as a laboratory to engage middle and high school students in cutting edge science research while providing them with significant new opportunities to apply STEM concepts, practice inquiry, and design and learn about the nature of scientific discovery.
This project focuses on critical needs in the preparation and long-term development of pre-service, undergraduate, K-6 teachers of science. The project investigates the impact on these students of undergraduate, standards-based, reform entry level science courses developed by faculty based on their participation in the NASA Opportunities for Visionary Academics processional development program to identify: short-term impacts on undergraduate students and long-term effects on graduated teachers; characteristics of reform courses and characteristics of effective development efforts.
This project aims to: (1) develop, implement and study the impact of a subject matter-focused, Problem-based Learning professional development model; and to (2) design ways of incorporating Problem-Based Learning (PBL) into key subject matter and teacher preparation courses taken by pre-service teachers, and study the impact on pre-service teachers' learning. This project is designed with and for teams of K-12 science and mathematics teachers from school districts of mid-Michigan.