Projects

09/15/2008

A principled framework is created for the development of learning progressions in science that can demonstrate how their use can transform the way researchers, educators and curriculum developers conceptualize important scientific constructs. Using the construct of transformation of matter, which requires understanding of both discrete learning goals and also the connections between them, a hypothetical learning progression is constructed for grades 5-12.

07/01/2019

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

07/01/2019

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

07/01/2019

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

09/01/2017

This project builds upon the prior work by creating problem-solving measures for grades 3-5. The elementary assessments will be connected to the middle-grades assessments and will be available for use by school districts, researchers, and other education professionals seeking to effectively measure children's problem solving. The aims of the project are to (a) create three new mathematical problem-solving assessments and gather validity evidence for their use, (b) link the problem-solving measures (PSMs) with prior problem-solving measures (i.e., PSM6, PSM7, and PSM8), and (c) develop a meaningful reporting system for the PSMs.

08/01/2021

The Common Core State Standards for Mathematics (CCSSM) problem-solving measures assess students’ problem-solving performance within the context of CCSSM math content and practices. This project expands the scope of the problem-solving measures use and score interpretation. The project work advances mathematical problem-solving assessments into computer adaptive testing. Computer adaptive testing allows for more precise and efficient targeting of student ability compared to static tests.

08/01/2021

The Common Core State Standards for Mathematics (CCSSM) problem-solving measures assess students’ problem-solving performance within the context of CCSSM math content and practices. This project expands the scope of the problem-solving measures use and score interpretation. The project work advances mathematical problem-solving assessments into computer adaptive testing. Computer adaptive testing allows for more precise and efficient targeting of student ability compared to static tests.

09/01/2019

This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

09/01/2022

This project will develop and test a learning progression for middle school physical science that incorporates the three dimensions identified in Next Generation of Science Standards (NGSS): the Disciplinary Core Ideas of matter, interaction, and energy; the Science and Engineering Practices of constructing explanations and developing and using models; and the Crosscutting Concepts of cause and effect and systems and system models. Bringing together all three NGSS dimensions is an innovation that allows for the project to explore the variety of learning pathways that students may follow as they apply scientific knowledge and practices to make sense of compelling phenomena or solve complex problems.

09/01/2011

This project designs, develops, and tests coherent interdisciplinary instructional materials to support high school students' integrated understanding of the forces and energetics involved in interactions that occur between atoms and molecules, and explores how students' learning progresses across time. The project will be implemented in three Michigan school districts with students who traditionally do not succeed in science. 

09/01/2014

The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

07/15/2019

This purpose of this project is to develop and validate a range of assessments with a focus on academic preparedness for higher education. The team will explore relevant qualities of assessments such as their differential predictive validity to ensure they are appropriate for underrepresented groups, the optimal grade level to begin assessing readiness, and measures that are most appropriate for predicting STEM-specific readiness.

10/01/2023

Understanding of algebra concepts is necessary for students to gain access to STEM pathways. However, recent efforts in education have failed to improve algebra outcomes for many students, especially those with learning disabilities and persistent difficulties in mathematics. The primary goal of this project is to develop a supplemental intervention that intentionally develops students' concept of variable as they learn to (a) interpret and evaluate expressions, (b) represent real-life mathematical word problems using algebraic notation, and (c) solve linear equations. A focus on clarifying common misconceptions about variables will be interwoven throughout the program.

09/01/2008

SRI International developed a formative assessment intervention that integrates classroom network technologies and contingent curriculum activities to help middle school teachers adjust instruction to improve student learning of Earth science concepts. The intervention was tested as part of a quasi-experimental study within an urban school district in Colorado that includes ethnically and economically diverse student populations. Findings indicate significant student learning gains for students in implementation classes as compared to students in comparison classes.

09/01/2013

This exploratory project develops and tests graphical scaffolds which facilitate high school students' coordination of connecting evidence with alternative explanations of particular phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry.

09/01/2015

This project will conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level which is aligned with the Next Generation Science Standards (NGSS).

09/01/2019

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to develop teacher leaders, improve teachers' instructional practices, and increase student mathematics understanding and achievement.

10/01/2024

With recent advances in artificial intelligence (AI), the United States needs to develop a diverse workforce with strong computational skills and the knowledge and capability to work with AI. Recent studies have raised questions about the extent to which youth are aware of AI and its application in industries of the future that may limit their interest in pursuing learning that lead toward careers in these industries. To address this challenge, learning trajectories (LTs) will be developed and researched for AI concepts that are challenging for middle and high school students. The project will design and pilot test learning activities and assessments targeting these concepts based on the LTs, offer teacher professional development on the LTs and related activities, and research the effectiveness of the LT-based activities when implemented by teachers during the regular school day.

08/01/2022

This project uses neural and behavioral measures of learning as a basis for making improvements to an immersive high school course that trains students in flexible spatial cognition and data analysis. Tracking students into college, the project measures long-term effects of improved spatial cognition resulting from the modified geospatial course curriculum.

07/01/2019

This project will develop and test a leadership model to improve K-8 mathematics teaching and learning by involving stakeholders across the K-8 spectrum. The project will support teachers, teacher leaders, and administrators in collectively identifying and addressing problems of practice in the teaching and learning of mathematics, and in turn develop plans to improve school and district organizational capacities to support stronger mathematics teaching.

08/01/2018

Project researchers are training pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The trainings emphasize the use of gestures and strategic questioning to support students with learning disabilities and to build students’ understanding in Algebra 1. These trainings will prepare tutors to address the challenges that students with learning disabilities often face—especially challenges related to working memory and processing—and to build on students’ strengths as they engage with Algebra 1.

08/01/2022

This project will design instructional assessment materials by using an innovative and unique design approach that brings together the coherent and systematic design elements of evidence-centered design, an equity and inclusion framework for the design of science materials, and inclusive design principles for language-diverse learners. Using this three-pronged approach, this project will develop a suite of NGSS aligned formative assessment tasks for first-grade science and a set of instructional materials to support teachers as they administer the formative assessments to students with diverse language skills and capacities.