This project provides a model of how existing, tested digital enhancements can increase student learning. Increasing the quality of science education requires careful coupling of effective, research-based curricula with innovative digital features that deepen and enhance science learning and teaching. This RAPID is to ensure that the content and pedagogical expertise is present during the development of the digital version of Foundation science.
Projects
The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.
This project builds on the study of the Ongoing Assessment Project's (OGAP) math assessment intervention on elementary teachers and students and combines the intervention with research-based understandings of systemic reform. This project will produce concrete tools, routines, and practices that can be applied to strengthen programs' implementation by ensuring the strategic support of school and district leaders.
SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.
This project aims to support teachers to engage their students in mathematical problem posing (problem-posing-based learning, or P-PBL). P-PBL is a powerful approach to the teaching and learning of mathematics, and provides students with opportunities to engage in authentic mathematical practices.
This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.
This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.
This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.
Expectations and opportunities for student learning in science are expanding to involve students in making sense of and addressing real questions and problems in the world around them. At the same time, school districts are seeking innovative ways to support teachers to provide instruction that takes into account students’ perspectives and uses those perspectives to teach science. This project seeks to understand how a large, urban school district implements a practice-based professional learning program for teachers that employs performance assessments as a lever for instructional improvement by eliciting, centering, and advancing students’ thinking in middle school science classrooms.
The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.
The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.
This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.
The project will research the implementation of Transition to Algebra, a year-long mathematics course for underprepared ninth grade students taken concurrently with Algebra 1 to provide additional support, and its impact on students' attitudes and achievement in mathematics in combination with teachers' instruction and the types of supports teachers need to successfully implement the intervention.
This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.
This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.
This project is (1) conducting a qualitative study on the way facilitators use Math for All (MFA), an NSF-supported set of professional development materials for teachers who teach elementary school students with disabilities; (2) developing resources based on that study for teacher leaders and other facilitators of professional development; and (3) conducting fieldtests of the resources to examine their usefulness and impact.
In this project, the research team will create a computer-mediated design environment that enables students in grades 7-10 to collaboratively explore, make connections, generate, and evaluate design ideas that address environmental science challenges. A unique feature of the project is its use of an artificial intelligent (AI) design mentor that relies on Design Heuristics, a research-based creativity tool that guides students through exploration of ideas and “learns” from students’ design processes to better assist them. The project will examine students’ perceptions of science and engineering, their ability to integrate academic and personal or community knowledge, their confidence for engaging in engineering, and their design thinking.
This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12.
This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through students’ understanding of scientific practice as measured by their attention to generality of explanation, clarity of communication, audience understanding, evidentiary support, and mechanistic versus descriptive accounts.
This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. Working in groups to design a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion and record their ideas and explanations in a digital journal.
This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. Working in groups to design a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion and record their ideas and explanations in a digital journal.
This project focuses on developing anti-racist mathematics teaching and learning practices that have led to inequitable school experiences for Black, Indigenous, and Latinx students. This study is a partnership with school and central office leaders from one district and educational researchers from three universities with expertise in both educational leadership and mathematics education. Partnership activities include documenting how leaders learn and develop anti-racist leadership practices and then measuring the impact on teachers’ instruction and students’ experiences.
This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.
This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.
This project is writing and researching a book supporting grade 5-8 students in scientific explanations and arguments. The book provides written and video examples from a variety of contexts in terms of content and diversity of students. The book and accompanying facilitator materials also provide different teacher instructional strategies for supporting students. The research focuses on how the book and accompanying professional development impact teachers' beliefs, pedagogical content knowledge and classroom practice.