This research study investigates the impact of the wireless environment on high school science resulting in a professional development model that will inform professional developers, administrators, policy-makers and teachers. The project uses in-depth case studies to examine context factors (e.g. technology implementation plans, school culture, extent and type of teacher professional development and teacher background) and critical interactions that may influence science instructional practice in wireless high school science classrooms.
Projects
Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.
This project covers participants' costs to attend a national conference series focusing upon supporting incipient science education research projects. A primary objective is to provide a venue in which researchers can describe their lines of inquiry and to then receive guidance and input about refining those ambitions. The other primary objective is to promote an innovative conference design in which a structured presentation format serves as an incubator for scholarly work.
The PuM project develops and conducts research on a learning continuum for seamless instruction in middle school physical science and high school physics. The ultimate goal is to use physics as the context to develop mathematics literacy, particularly with students from underrepresented populations and special needs students. The research component analyzes the effects of the curriculum on students' learning while simultaneously investigating teachers' pedagogical content knowledge in a variety of forms.
This project aims to develop a software diagnostic tool for integrating diagnostic interviews, group administered assessments, and student data in real-time so that teachers can enter and view student status information. This project would concentrate on rational number learning in grades 3-8. The design is based on a model of learning trajectories developed from existing research studies.
The primary purpose of this international conference was for participants in the US to exchange views and discuss the latest research findings on (primary) science assessment. The conference focused on research around building assessment systems that help teachers diagnose student learning in the classroom but also link meaningfully to large-scale accountability systems (in districts or national levels). The project resulted in a report, proceedings, journal publications.
The Coaching Cycle project is creating an online course for K–8 mathematics instructional coaches. The project targets coaches in rural areas and small schools who do not have access to regular district-wide professional development. It provides training in the skills needed for effective instructional coaching in mathematics by using artifacts collected by practicing coaches to engage course participants in the practice of coaching skills.
This project has pioneered simulation-based assessments of model-based science learning and inquiry practices for middle school physical and life science systems. The assessment suites include curriculum-embedded, formative assessments that provide immediate, individualized feedback and graduated coaching with supporting reflection activities as well as summative end-of-unit benchmark assessments. The project has documented the instructional benefits, feasibility, utility, and technical quality of the assessments with over 7,000 students and 80 teachers in four states.
The goal of these two linked conferences was to build more effective connections between research and practice. Specifically, the conferences brought together researchers, practitioners. and policy makers around improving students' mathematics proficiency by ensuring that researchers were investigating the most urgent problems of practice and that practitioners were connected to the research in ways that makes the knowledge useful to instruction.
This exploratory project aims to develop a community of individuals and organizations working together to address critical issues in K-12 computer science education by broadening the awareness of the need for curriculum computer science standards, providing multiple levels of professional development, conducting and disseminating research in computer science education, and promoting this subject as a unique field of study in schools.
The purposes of this conference include bringing together 150 participants from all aspects of STEM education to exchange ideas about research, curriculum, and assessment; to help teachers integrate research-based instructional strategies in their teaching; and to build sustainable collaborations between participants. It includes three days of parallel presentations and discussion followed by a two-day summer academy. A focus on research-based strategies that advance the successful participation of underrepresented groups is embedded in all activities.
This conference showcases and analyzes progressive ideas about curriculum, teaching, assessment, and technology in high school and early college mathematics. The conference brings together leaders of state and local school system mathematics programs, mathematicians, curriculum developers, educational researchers, and education policy makers for in-depth discussion of the challenges and opportunities for innovation in high school mathematics.
This project provides support for a two-day workshop that would bring about 60 participants together to discuss the issues, challenges and opportunities in "Materials Education" and devise strategies for synergizing all stakeholders involved for further progress. Discussions will be focused on 4 topics: (1) Educating the public about the relevance of materials research; (2) Materials education for K-12 students and teachers; (3) Revolutionizing undergraduate education toward flexible curriculum; (4) Materials education for graduate students.
This project is NSF's contribution to an interagency effort with NASA and NOAA to focus three symposia at the National Science Teachers Association annual meeting, not on particular agency efforts, but specifically on International Polar Year science through three themes: ice, life, and water and air. NSTA focuses on promoting innovation and excellence in science teaching and learning as well as the professional development of teachers to teach science.
Project MSSELL will conduct a two-year randomized trial longitudinal evaluation of an enhanced standards-based science curriculum model. In Year 1, the project will refine and pilot the model based on learnings from its previous developmental phase and implementation with K-3 grade students. In Years 2 and 3, the enhanced model will be implemented and studied with fifth- and sixth-grade students.
The Conference Board for the Mathematical Sciences (CBMS) is collaborating with the U.S. Department of Education to host a forum in Washington, DC designed to launch action for change in mathematics education based on the recommendations of the National Mathematics Advisory Panel. This forum will focus specifically on the following four areas: teachers and teacher education, learning processes, instructional material, and standards of evidence—research policies and mechanisms.
This project is producing research syntheses that summarize and make available to practitioners results from research on effective mathematics curricular interventions, teaching practices, and teacher professional development that have been designed to improve achievement by students in Title 1 programs. The project’s goal is to bring together the best resources in both mathematics education and Title I so that programs are better able to serve the mathematical learning and instructional needs of Title I schools.
This project involves holding a conference, Helping Teachers Become Culturally Relevant Teachers: Developing New Tools for a New Generation, where the goals are to bring together the very best researchers/practitioners in this field to present a clear theoretical underpinning of Culturally Relevant Teaching (CRT), present the most recent rigorous research to support the theory, and show clearly how CRT theory translates directly into classroom action.
Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.
This project is a four-year, longitudinal, mixed-methods study of 12 school districts’ implementation of elementary mathematics instructional materials. It investigates the relationships among the district level of coherence of implementation, the school level of support for implementation, the school level of use of materials, and the effects on student outcomes.
This project will synthesize existing literature on modeling-based instruction (MBI) in K-12 science education over the last three decades. It will rigorously code and examine the literature to conceptualize the landscape of the theoretical frameworks of MBI approaches, identify the effective design features of modeling-based learning environments with an emphasis on technology-enhanced ones, and identify the most effective MBI practices that are associated with successful student learning through a meta-analysis.
This synthesis project is a systematic review of experimental research evaluating programs and practices in elementary science. The systematic review addresses all areas of science in the elementary grades. The review uses an adaptation of best-evidence synthesis previously applied to elementary and secondary mathematics and reading, and includes experimental and quasi-experimental research on the outcomes of alternative approaches to elementary science.
The research goal of this project is to evaluate whether an early childhood science education program, implemented in low-income preschool settings produces measurable impacts for children, teachers, and parents. The study is determining the efficacy of the program on Science curriculum in two models, one in which teachers participate in professional development activities (the intervention), and another in which teachers receive the curriculum and teachers' guide but no professional development (the control).
This project is supporting and investigating the implementation of reformed mathematics instruction at the middle school level in two large school districts. The primary goal of the project is to develop an empirically grounded theory of action for implementing reform at school and district levels. The researchers are investigating reform within a coherent system that focuses on leadership and school-based professional development.
This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.