Projects

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

An exit ticket is a recommended and widely used way to end a lesson. The most common purpose of exit tickets is to provide formative feedback to teachers about whether students have met the objectives of a given lesson. However, the psychology of learning literature suggests that there is an untapped potential for exit tickets to also benefit students’ learning directly. This project explores two potential enhancements to exit tickets, with the goal of improving high-school students’ mathematics knowledge and ability to regulate their own learning processes.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

09/15/2024

The United States faces the critical need to prepare students and the future workforce for advances in Artificial Intelligence (AI). This project will develop curriculum that will engage middle-school students in learning science and basic AI concepts and in developing related career interests.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

07/01/2024

Effective “early” algebra interventions in elementary grades that can develop all students’ algebra readiness for later grades are needed. This study will use an experimental design to test the effectiveness of a Grades K–2 early algebra intervention when implemented in diverse classroom settings by elementary teachers. The broader impact of the study will be to deepen the role of algebra in elementary grades, provide much-needed curricular support for elementary teachers, and strengthen college and career readiness standards and practices.

10/01/2022

This comprehensive systematic review and meta-analysis synthesizes evidence surrounding math and science remote education programs from the past 15 years. The goal is to understand the effectiveness of math and science remote education programs; how their effectiveness varies by program characteristics (e.g., fully online vs. hybrid, synchronous vs. asynchronous, and student-instructor ratio); and whether their effects vary with student sample characteristics.

09/01/2022

This project will develop and test a learning progression for middle school physical science that incorporates the three dimensions identified in Next Generation of Science Standards (NGSS): the Disciplinary Core Ideas of matter, interaction, and energy; the Science and Engineering Practices of constructing explanations and developing and using models; and the Crosscutting Concepts of cause and effect and systems and system models. Bringing together all three NGSS dimensions is an innovation that allows for the project to explore the variety of learning pathways that students may follow as they apply scientific knowledge and practices to make sense of compelling phenomena or solve complex problems.

09/01/2022

This project supports the development of a collaborative digital learning environment that embeds rich middle school mathematics tasks. The project aims to understand how students' individual and collaborative engagement in learning mathematics is enhanced by the digital platform, and how student engagement and learning is affected over the course of a year-long seventh grade course.

09/01/2022

To act on energy issues, students need a strong understanding of energy flow and energy efficiency. However, students rarely have opportunities to learn about how buildings, such as their own school, drive about 40% of energy use and global carbon emissions. Addressing this gap in science education, this project will design, pilot, and evaluate a 6-week middle school curriculum called Build it Green! (BIG!). Blending classroom experiences and interactive digital learning tools, the researchers will work with rural middle schools in Missouri to implement and test how following the story of energy flow in and out of a hypothetical school building enhances students’ understanding of energy systems in the science of green buildings.

09/01/2022

Familial presence in school supports children’s learning. However, few models exist that illustrate forms of familial presence in STEM learning that center familial cultural knowledge and practice. The project will produce a model for familial engagement in STEM along with instructional tools and illustrative case-studies that can be used by teachers and school districts nationally in support of increasing students’ STEM learning. This three-year study investigates new instructional practices that support rightful familial presence in STEM as a mechanism to address the continued racial and class gaps in STEM achievement for historically marginalized students.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

In this project, the research team will create a computer-mediated design environment that enables students in grades 7-10 to collaboratively explore, make connections, generate, and evaluate design ideas that address environmental science challenges. A unique feature of the project is its use of an artificial intelligent (AI) design mentor that relies on Design Heuristics, a research-based creativity tool that guides students through exploration of ideas and “learns” from students’ design processes to better assist them. The project will examine students’ perceptions of science and engineering, their ability to integrate academic and personal or community knowledge, their confidence for engaging in engineering, and their design thinking.

09/01/2022

The project is designing a web-based, district-led professional development implementation, focusing on improving mathematics discourse practices in K-2 classrooms, with particular attention to emergent multilingual learners. Building on two prior NSF-funded projects, the All Included in Mathematics K-2 New Extensions professional learning program will develop and research the impact of an augmented model for mathematics professional development on K-2 student learning through the addition of supports for coaches and leaders to the existing professional development model.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project aims to restructure middle school science education around Grand Challenges (GCs) such as pandemics, climate events, and diminishing biodiversity. Anchoring science education around grand challenges can motivate students learning and provide a meaningful context for science curriculum and assessment. By engaging in the units around GCs, middle school science teachers and students will have opportunities to work with real data, engage in argumentation based on evidence, and take part in solutions to the grand challenges.

08/15/2022

This project focuses on developing anti-racist mathematics teaching and learning practices that have led to inequitable school experiences for Black, Indigenous, and Latinx students. This study is a partnership with school and central office leaders from one district and educational researchers from three universities with expertise in both educational leadership and mathematics education. Partnership activities include documenting how leaders learn and develop anti-racist leadership practices and then measuring the impact on teachers’ instruction and students’ experiences.

08/01/2022

This study will investigate factors influencing teacher change after professional learning (PL) experiences and will examine the extent to which modest supports for science and engineering teaching in grades 3-5 sustain PL outcomes over the long term, such as increases in instructional time devoted to science, teacher self-efficacy in science, and teacher use of reform-oriented instructional strategies aligned with the Next Generation Science Standards.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.

08/01/2022

Teacher professional learning is a critical part of the mathematics education landscape. For decades, professional learning has been the primary strategy for developing the skills of the teaching workforce and changing how teachers interact with students in classrooms around academic content. Professional learning also can be expensive for districts, both financially and in terms of teacher time. Given these investments, most school leaders wish to spend their professional development dollars efficiently, making decisions about professional learning design that maximize teacher and student learning. However, despite more than two decades of rigorous research on professional learning programs, practitioners have little causal evidence on which professional learning design features work to accelerate teacher learning. This project seeks to identify features of teacher professional learning experiences that lead to better mathematics outcomes for both teachers and students.

07/15/2022

The project will design, develop, and test a research-based professional development (PD) approach that will ensure that teachers, and ultimately their middle-school students, have the knowledge to act in a way that promotes zero net loss of biodiversity in their communities. Through their participation in the PD, teachers will be equipped to plan for and implement NGSS-aligned instruction, facilitate student identification and understanding of biodiversity and environmental justice issues in their local community, and foster student capacity to take action. Students will come to understand that biodiversity is a global issue that they can influence at the local level, and will become empowered, in both their knowledge and their agency, to be leaders in solving biodiversity problems in their communities.

07/01/2022

This project aims to create and study an Equitable and Interactive Mathematical Modeling (EIM2) program that positions students as decision makers in their own learning. Despite the value of connecting students’ life experiences with their mathematical learning, the practical implementation of this strategy has proven challenging in a classroom setting. EIM2 addresses this issue by supporting students to engage in equitable mathematical modeling, a process of using mathematics to analyze and quantify scenarios through a lens of equity.