High school and first-year college mathematics courses sometimes act as gatekeepers, ‘weeding out’ students who struggle with the subject matter and narrowing students’ opportunities for advanced STEM education and employment. Acknowledging opportunity gaps for students of color and those experiencing poverty, this partnership development project brings together Milwaukee Public Schools (MPS), Milwaukee Area Technical College (MATC), and WestEd to establish dual enrollment math courses that function as a lever for equity.
Projects
Anxiety about math has increased for some students due to disruptions in their learning during the COVID-19 pandemic. This partnership development project involving Portland State University and the Tigard-Tualatin School District addresses pandemic-related learning challenges in middle school mathematics, with a focus on math anxiety. Across the yearlong project, the partners play equal roles in co-developing research, practice, and policy proposals aimed at enhancing math outcomes and reducing math anxiety among the district’s middle school students.
Tutoring programs that are jointly supported by schools and universities can offer benefits to both parties. The programs, however, are only helpful to the extent they respond to the needs and interests of the students and schools they serve. This project will establish a partnership between a large, urban university and a small, rural high school to collaboratively create a tutoring program to support the mathematics learning of students with learning disabilities.
While more accessible online learning opportunities that reflect everyday teaching challenges are becoming more available, most of these more flexible professional development experiences are being offered by colleges and universities to teachers who are not yet in the classroom. This situation provides an opportunity to explore how innovations in teacher professional development can be woven into school districts’ regular professional development work with its teachers. This partnership development project will create a shared vision and plan for making digitally-based teaching tasks available to elementary math and science teachers so they can learn at any time and from anywhere.
Understanding of algebra concepts is necessary for students to gain access to STEM pathways. However, recent efforts in education have failed to improve algebra outcomes for many students, especially those with learning disabilities and persistent difficulties in mathematics. The primary goal of this project is to develop a supplemental intervention that intentionally develops students' concept of variable as they learn to (a) interpret and evaluate expressions, (b) represent real-life mathematical word problems using algebraic notation, and (c) solve linear equations. A focus on clarifying common misconceptions about variables will be interwoven throughout the program.
This project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers. The project will field test and conduct research on the artifacts, facilitation strategies, and modes of interaction that effectively prepare K-2 teachers to learn about their students’ emergent use of computational thinking strategies.
Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills. This impact study project will investigate the effectiveness of STEM-Innovation and Design (STEM-ID) curricula and determine whether STEM-ID courses are equally effective across different demographic groups and school environments under normal implementation conditions and whether the courses have the potential to positively impact a vast number of students around the country, particularly students who have struggled to stay engaged with their STEM education.
This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.
This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.
In COVID Connects Us, the project team investigates the challenges of learning how to support justice-centered ambitious science teaching (JuST). The project team will partner with networks of secondary science teachers as they first implement a common unit aimed at engaging youth in science and engineering practices in ways that are culturally sustaining, focused on explanation-construction and intentionally anti-oppressive. The teachers will then use their shared experiences to revise future instruction in ways that are justice-centered and that engage students in the ways research suggests is important for their learning.
Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.
This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.
Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.
Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.
This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.
Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.
Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms.
This project team partners with the mathematics department of one urban public charter high school that serves 65% students of color (most of whom identify as African American). At the school, 70% of all students qualify for free or reduced lunch, and 25% of the students have Individualized Education Plans. This project investigates: 1) how mathematics teachers learn to teach the mathematics content through investigation of relevant social issues, 2) how teachers negotiate classroom dilemmas related to this approach, and 3) how students feel about mathematics and their ability to enact change toward an equitable society.
This study will build upon the team's prior research from early in the pandemic. Researchers will continue to collect data from families and aims to understand parents’ perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the Spring and Summer of 2021 and into the 2021-22 school year.
The purpose of this project is to rigorously test the efficacy of the Precision Mathematics First-Grade (PM-1) intervention on the mathematics outcomes of English learners (ELs) who face mathematics difficulties (MD). The PM-1 intervention is designed to support students with or at risk for MD in developing a robust understanding of the underlying concepts, problem-solving skills, and vocabulary of early measurement and statistical investigation. This study will examine student response to the PM-1 intervention based on variables such as students' initial mathematics skill levels and proficiency in English, and explore how the rate and quality of mathematics discourse opportunities for ELs may predict gains in mathematics outcomes.
The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to disparities in student access to high-quality, advanced physics instruction by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials. This program will help teachers adapt, adopt, and integrate high-quality, university-aligned physics instruction into their classrooms, in turn opening more equitable, clear, and viable pathways for students into STEM education and careers.