The project will develop a teacher professional learning (PL) model that focuses on middle-school biological sciences in addressing real world problems. Systems thinking is central to understanding biology systems. Game design has been shown to help develop systems thinking in teachers and students. Students will participate in PL to illustrate the value of distributed expertise by sharing their knowledge of computer. Teachers will adapt their existing curriculum and will co-design games with students to experience participatory practices.
Projects
The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.
The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.
The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.
This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.
The goal of this study is to build foundational knowledge about teacher learning by using video clips of science instruction within a professional development context. The researchers will study the infusion of principles from cognitive science as possible ways to enhance teacher learning from video, including contrasting cases and self-explanation principles.
Videos of teaching have become a popular tool for facilitating teacher learning, with the potential to powerfully impact teacher practice. However, less is known about specific mechanisms through which teachers learn from video. The goal of this study is to build foundational knowledge about teacher learning by using video clips of science instruction within a professional development (PD) context.
This professional development project engages a sample of kindergarten and 1st-grade teachers in a series of workshops, during which teachers will work individually and together to design and test new lesson plans that enhance teachers' abilities to help young children think and act like a scientist. Moreover, teachers work individually and together to construct lessons that connect science content to young learners' cultural backgrounds, interests and prior knowledge.
This project is developing a two-year, intensive professional development model to build middle-grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model helps teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice.
This project will develop and study a curriculum and app that support computational thinking (CT) in a high school biology unit. The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply CT principles.
This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.
This project develops images, extended examples, and principles that illustrate how the articulation, representation and justification of general claims about operations evolve in the elementary grades and how this work supports the transition from arithmetic to algebra in the middle grades. An online course uses the Sourcebook as a text to engage teachers in considering the underlying pedagogical and mathematical aspects of the work and implementing these ideas in their instruction.
This project scales and further tests the Target Inquiry professional development model. The scale-up and further testing would involve adding physics, biology and geology at Grand Valley State University, and implementing the program at Miami University with chemistry teachers. The project is also producing a website of instructional materials for middle and secondary science.
This project scales and further tests the Target Inquiry professional development model. The model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers, and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students.
This project addresses biology teachers and students at the high school level, responding to the exponential increases occurring in biology knowledge today and the need for students to understand the experimental basis behind biology concepts. The project studies the feasibility of engaging students in an environment where they can learn firsthand how science knowledge develops in the fields of bioinformatics and DNA science by performing collaborative, simulated experiments to solve open-ended problems.
The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.
The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.
A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.
A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.
The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
This exploratory study aims to design, implement, and test climate science and history professional learning materials and experiences for high school teachers. By leveraging existing science and history/social science materials, the program will develop curricular planning tools and lessons to help teachers integrate climate literacy into their instructional units. The goal is to provide students with the knowledge to understand and respond to the social and environmental issues associated with the climate crisis.
This project investigates the variation in teachers' practice of lesson study to identify effective and scalable design features of lesson study associated with student mathematics achievement growth in Florida. Lesson study is a teacher professional development model in which a group of teachers works collaboratively to plan a lesson, observe the lesson in a classroom with students, and analyze and discuss the student work and understanding in response to the lesson.
This project provides elementary teachers, grades 3-5 with a pedagogical framework and related resources for distinguishing quality science teaching. The study focuses on developing and testing a framework, the Quality Science Teaching Continuum (QSTC), to determine its capacity to serve as a potent formative and collaborative tool with which teachers can reflect on their science teaching practices and recognize student behaviors that are indicators of engagement and science learning.
The overarching goal of this project is to develop innovative instructional resources and professional development to support middle grades teachers in meeting the challenges set by college- and career-ready standards for students' learning of algebra.
This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.