This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations.
Projects
This project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, and will develop ways for students to conduct experiments within the virtual world and to see the results of those experiments.
The ability to express scientific ideas in both written and oral form is an important 21st century skill. This project would help teachers help students achieve these skills through automating an effective feedback process, in ways that are customized to particular disciplines and local classroom needs, particularly in high needs districts. The project will contribute to knowledge about how students learn to write and how computer assisted systems can support this learning.
Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.
Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on robotics curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK).
This project will develop a video recording and analysis system called VideoReView (VRV) that allows grade four science teachers to record, tag, and analyze video in their classroom in real time. The investigators will then study and enhance the system in the context of professional learning communities of teachers.
This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.
This project builds on prior efforts to create teaching resources for high-school Advanced Placement Statistics teachers to use an open source statistics programming language called "R" in their classrooms. The project brings together datasets from a variety of STEM domains, and will develop exercises and assessments to teach students how to program in R and learn the underlying statistics concepts.
The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions.
The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.
Despite the tremendous growth in the availability of mathematics videos online, little research has investigated student learning from them. The goal of this exploratory project is to create, investigate, and provide evidence of promise for a model of online videos that embodies a more expansive vision of both the nature of the content and the pedagogical approach than is currently represented in YouTube-style lessons.
This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.
The purpose of this 4-year project is to improve student mathematics achievement by developing a mathematics intervention focused on key measurement and data analysis skills. The PM intervention will be designed for first and second grade students who are experiencing mathematics difficulties. To increase student mathematics achievement, the intervention will include: (a) a technology-based component and (b) hands-on activities.
This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games.
This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.
This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.
Data Nuggets (http://datanuggets.org) are classroom activities, co-designed by scientists and teachers, which give students practice interpreting quantitative information and making claims based on evidence. The goal of this research is to investigate whether the integration of real data from cutting-edge scientific research in grade 6-10 classrooms will increase students’ quantitative reasoning ability in the context of science.
This project leverages an existing game by embedding tools for studying patterns of students' decision-making and problem solving in the environment. This allows researchers to understand how students learn about computational thinking within a tool that bridges informal and formal learning settings to engage a wide variety of students. The project will also develop tools and resources for classroom teachers.