Projects

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2008

This project is focusing on the redesign of popular commercial video games to support students’ understanding of Newtonian mechanics. In support of this goal, SURGE develops and implements design principles for game-based learning environments, integrating research on conceptual change, cognitive processing-based design, and socio-cognitive scripting. These enhanced games bridge the gap between student learning in non-formal game environments and the formalized knowledge structures learned in school by leveraging and integrating the strengths of each.

06/01/2015

This project will convene mathematics teacher educators with different theoretical perspectives to develop a shared menu of research-supported practices and new research questions to explore that could improve mathematics methods courses.

10/01/2017

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

09/01/2014

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

10/01/2009

This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.

09/01/2008

This project aims to develop, pilot, and evaluate a model of instruction that advances the scientific literacy of high school students by involving them in science journalism, and to develop research tools for assessing scientific literacy and engagement. We view scientific literacy as public understanding of and engagement with science and technology, better enabling people to make informed science-related decisions in their personal lives, and participate in science-related democratic debates in public life.

 

07/15/2016

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

09/01/2018

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

07/15/2015

The goal of this research is to investigate whether the integration of real data from cutting-edge scientific research in grade 6-10 classrooms will increase students’ quantitative reasoning ability in the context of science. We will adapt the materials to address current science and mathematics standards, including key concepts from  develop a professional development program for teachers, and test the efficacy of the materials through a quasi-experiment.

08/15/2008

This project investigates the potential of online role-playing games for scientific literacy through the iterative design and research of Saving Lake Wingra, an online role-playing game around a controversial development project in an urban area. Saving Lake Wingra positions players as ecologists, department of natural resources officials, or journalists investigating a rash of health problems at a local lake, and then creating and debating solutions.

09/01/2007

This project employs sensing technologies to help transform students' physical actions during play into a set of symbolic (computer) representations in a physics simulation and to engage the children in a developmentally appropriate and powerful form of scientific modeling. The students are in grades K–1 at UCLA's elementary school, and the intervention is based on the existing content unit on Force and Motion.

10/01/2016

This project will develop a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.

08/15/2007

This grant examines the changes teachers and students go through in their first year of implementing a New Technology High School project-based curriculum for ninth graders in two high schools. This first year of implementation is part of a phased-in implementation for subsequent grades. The NTHS approach calls for moving from more traditional approaches to mathematics and science education to project-based curricula that posits mathematics and science in the context of real-world issues and problems.

10/01/2012

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

08/01/2008

This project develops and researches the academic potential of a hybrid instructional model that infuses computer simulations, modeling, and educational gaming into middle school technology education programs. These prototypical materials use 3-D simulations and educational gaming to support students’ learning of STEM content and skills through developing solutions to design challenges.

06/15/2015

This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.

06/15/2015

This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.

08/01/2013

This working conference will help university professors who teach elementary mathematics methods courses learn to use Complex Instruction, a research-proven pedagogy for building mathematical content knowledge and supporting the learning of diverse students.

10/01/2024

As the nation tackles the challenges of energy transition, K-12 education must prepare a future STEM workforce that can not only apply STEM skills but also address reasoning through complex sociotechnical problems involving social justice. Aligned with the principles of socially transformative engineering and focused on students of color, this project involves the design and implementation of a novel STEM education curriculum that will support the development of secondary students’ abilities to reason through ambiguous and ethical challenges through design projects and to transfer these competencies to everyday life and future workplaces.