Projects

09/15/2024

The United States faces the critical need to prepare students and the future workforce for advances in Artificial Intelligence (AI). This project will develop curriculum that will engage middle-school students in learning science and basic AI concepts and in developing related career interests.

09/15/2024

Society has grown to rely on smart, embedded, and interconnected systems. This has created a great need for well-qualified and motivated engineers, scientists, and technicians who can design, develop, and deploy innovative microelectronics and Artificial Intelligence (AI) technologies, which drive these systems. This project will address the need for a more robust computer science and engineering workforce by broadening access to microelectronics and AI education leveraging the cutting-edge technologies of Tiny Machine Learning and low-cost microcontroller systems in diverse high schools. The goal of this project is to engage high-school students and teachers from underresourced communities in the design and creative application of AI-enabled smart, embedded technologies, while supporting their engineering identity development and preparing them for the STEM jobs of tomorrow.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/15/2024

Society has grown to rely on smart, embedded, and interconnected systems. This has created a great need for well-qualified and motivated engineers, scientists, and technicians who can design, develop, and deploy innovative microelectronics and Artificial Intelligence (AI) technologies, which drive these systems. This project will address the need for a more robust computer science and engineering workforce by broadening access to microelectronics and AI education leveraging the cutting-edge technologies of Tiny Machine Learning and low-cost microcontroller systems in diverse high schools. The goal of this project is to engage high-school students and teachers from underresourced communities in the design and creative application of AI-enabled smart, embedded technologies, while supporting their engineering identity development and preparing them for the STEM jobs of tomorrow.

09/15/2024

Society has grown to rely on smart, embedded, and interconnected systems. This has created a great need for well-qualified and motivated engineers, scientists, and technicians who can design, develop, and deploy innovative microelectronics and Artificial Intelligence (AI) technologies, which drive these systems. This project will address the need for a more robust computer science and engineering workforce by broadening access to microelectronics and AI education leveraging the cutting-edge technologies of Tiny Machine Learning and low-cost microcontroller systems in diverse high schools. The goal of this project is to engage high-school students and teachers from underresourced communities in the design and creative application of AI-enabled smart, embedded technologies, while supporting their engineering identity development and preparing them for the STEM jobs of tomorrow.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

10/01/2024

With recent advances in artificial intelligence (AI), the United States needs to develop a diverse workforce with strong computational skills and the knowledge and capability to work with AI. Recent studies have raised questions about the extent to which youth are aware of AI and its application in industries of the future that may limit their interest in pursuing learning that lead toward careers in these industries. To address this challenge, learning trajectories (LTs) will be developed and researched for AI concepts that are challenging for middle and high school students. The project will design and pilot test learning activities and assessments targeting these concepts based on the LTs, offer teacher professional development on the LTs and related activities, and research the effectiveness of the LT-based activities when implemented by teachers during the regular school day.

12/01/2024

STEM learning is a function of both student level and classroom level characteristics. Though research efforts often focus on the impacts of classrooms level features, much of the variation in student outcomes is at the student level. Hence it is critical to consider individual students and how their developmental systems (e.g., emotion, cognition, relational, attention, language) interact to influence learning in classroom settings. This is particularly important in developing effective models for personalized learning. To date, efforts to individualize curricula, differentiate instruction, or leverage formative assessment lack an evidence base to support innovation and impact. Tools are needed to describe individual-level learning processes and contexts that support them. The proposed network will incubate and pilot a laboratory classroom to produce real-time metrics on behavioral, neurological, physiological, cognitive, and physical data at individual student and teacher levels, reflecting the diverse dynamics of classroom experiences that co-regulate learning for all students.