This project focuses on the teaching practice of building on student thinking, a practice in which teachers engage students in making sense of their peers' mathematical ideas in ways that help the whole class move forward in their mathematical understanding. The study examines how teachers incorporate this practice into mathematics discussions in secondary classrooms by designing tasks that generate opportunities for teachers to build on students' thinking and by studying teachers' orchestration of whole class discussions around student responses to these tasks.
Projects
The PI of this project argues cogently that assessment of pre-service teacher preparedness to teach is based on a flawed model. The goal then is to use a simulation model from other professional arenas: the training of doctors, nurses, etc., to offer new insights and control for the many variables that come to play when conducting evaluations in practice.
Professional learning communities (PLCs) are one common model for teachers to collaborate and learn from one another. The goal of this study is to understand how teachers' expertise is positioned in a PLC and the larger system of the school and district to inform mathematics teaching and learning. This should help schools and districts understand the features of PLCs that are important for supporting teachers as they collaborate and learn.
To meet College and Career-Ready standards in mathematics, classroom instruction must change dramatically. As in past reform efforts, many look to professional development as a major force to propel this transformation, yet not enough is known about mathematics professional development programs that operate at scale in the United States. In this project, we evaluated one such program.
This project is connecting mathematicians and mathematics teachers in middle schools by offering summer workshops and continued communication throughout the year. The workshops focus on mathematical problem solving and include activities that offer multiple entry points. The goal of the workshops is to increase teachers' knowledge of mathematics for teaching and to help teachers use their knowledge to improve student learning of mathematics.
This project seeks to map a trajectory for the evolution of elementary school mathematics teachers engaged in sustained professional development. The goal of the project is to identify and understand the evolution of elementary school mathematics teachers' changing perspectives and needs as they participate in professional development. Drawing from a pool of more than 500 teachers, the sample includes 120 elementary school mathematics teachers engaged in sustained professional development for different lengths of time.
This study examines ways that teacher-level factors (including teacher background variables and instructional practices) and student-level factors (such as self-rated mathematics interest and proficiency), and interactions among these factors, are associated with American Indian/Alaska native (AI/AN) student academic achievement in middle grades mathematics. The ultimate goal is to identify malleable factors that, if changed, could improve teachers' practices and AI/AN student achievement in mathematics.
In this project, the team will address questions about how collaborative problem solving, learning progressions, and facilitation interact in the development of students’ mathematical learning. The work affords an opportunity to advance equitable access to high-quality education for all students by enhancing the quality of instruction for students lacking opportunities to learn key concepts of mathematics because of the inequitable structures of education in the country.
Investigations in Cyber-enabled Education (ICE) strives to provide a professional development design framework for enhancing teacher ability to provide science, technology, and math (STM) instruction for secondary students. Exploratory research will clarify ICE framework constructs and gather empirical evidence to form the basis of anticipated further research into the question: Under what circumstances can cyber-enabled collaboration between STM scientists and educators enhance teacher ability to provide STM education?
This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms.
The objective of this study is to examine the impact of ITEAMS intervention strategies on student persistence in high school STEM course-taking and career expectations, and the value that students place on STEM careers.
This project aims to improve professional development programs for pre-service teachers (PSTs) as a way to improve student learning in mathematics and science. PSTs engage in a series of teaching cycles, and then engage in lesson study groups to develop, teach, and analyze a whole-class lesson. The cycle is completed by reexamining students' knowledge in teaching experiments with pairs of students. These teaching cycles are called Iterative Model Building (IMB).
This project is evaluating existing knowledge about STEM teachers in professional learning communities (PLCs), both prospective teachers and classroom teachers across grades K-12. It will comprehensively synthesize peer-reviewed research but will also examine additional types of knowledge that influence the field. The project methods adapt those of Knowledge Management and Dissemination project, funded by NSF MSP and seeks to further advance the scope and rigor of knowledge synthesis.
This project tests and refines a hypothetical learning trajectory and corresponding assessments, based on the collective work of 50 years of research in mathematics education and psychology, for improving students' ability to reason, prove, and argue mathematically in the context of algebra. The study produces an evidence-based learning trajectory and appropriate instruments for assessing it.
To prepare the country's youth more broadly for a globalized world, the U.S. National Commission on Mathematics Instruction (USNCMI) will engage with the international community and assist in improving the state of mathematics education in the country by implementing international education programs, participating in international benchmarking activities, and working closely with other countries and multilateral organizations.
This project is creating five video-case modules for use in professional development of middle school mathematics teachers. The materials are designed to develop teachers' understanding of mathematics knowledge for teaching similarity. In total, 18-24 video cases will be produced, which, taken together, form the curriculum of a 45- to 60-hour professional development course.
This project is testing the effectiveness of the 'Learning Assistant Model' for recruiting, preparing, and retaining STEM K-12 teachers by developing a suite of survey instruments that can be used by researchers interested in testing the effectiveness of teacher preparation programs, course transformations, or conceptual or pedagogical knowledge. It focuses on teacher certification programs,K-12 contexts and students' experiences in STEM departments and the role of STEM research faculty in preparing future teachers.
This project will develop and study two sets of instructional materials for K-2 teacher professional development in mathematics and science that are aligned with the CCSS and NGSS. Teachers will be able to review the materials online, watch video of exemplary teaching practice, and then upload their own examples and students' work to be critiqued by other teachers enrolled in professional learning communities as well as expert coaches.
In this project, researchers will collaborate to enhance understanding of influences on learning, and improve teaching and learning in high school and middle school STEM classes. They will leverage the latest tools for data processing and many different streams of data that can be collected in technology-rich classrooms to (1) identify classroom factors that affect learning and (2) explore how to use that data to automatically track development of students' understanding and capabilities over time.
This project is developing teaching modules that engage high school students in learning and using mathematics. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation helps students connect their everyday and school mathematical thinking. Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools.
Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.
Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.
The COVID-19 pandemic has significantly disrupted the ability of teacher education programs to place their teacher candidates in typical K-12 teaching settings as a part of learning to teach. This project examines how simulated classroom field experiences for preservice teachers can be implemented in online and emergency remote teacher education courses.
The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.
This project will use classroom-based research to teach children about important algebraic concepts and to carefully explore how children come to understand these concepts. The primary goal is to identify levels of sophistication in children's thinking as it develops through instruction. Understanding how children's thinking develops will provide a critical foundation for designing curricula, developing content standards, and informing educational policies.