The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. This study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance.
Projects
Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce.
This project investigates the variation in teachers' practice of lesson study to identify effective and scalable design features of lesson study associated with student mathematics achievement growth in Florida. Lesson study is a teacher professional development model in which a group of teachers works collaboratively to plan a lesson, observe the lesson in a classroom with students, and analyze and discuss the student work and understanding in response to the lesson.
This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs.
This research investigates student mathematics learning outcomes at the elementary level in relation to teacher expertise (elementary teachers with math specialist certification versus generally prepared elementary teachers) and school organization (departmentalized versus self-contained mathematics classrooms). Findings will provide evidence of the impact of content-specific teacher expertise and a departmentalized school organizational model that offers students access to well-qualified teachers of mathematics with no additional staffing costs.
Students who fail algebra in the ninth grade are significantly less likely than their peers to graduate from high school on time. This project intends to test a common support strategy for at-risk students that provides an extra period of algebra, commonly known as a "double dose" condition. The Intensified Algebra (IA) is an intervention that addresses both the academic and non-academic needs of students.
This program of research will examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program?
This project will use classroom-based research to teach children about important algebraic concepts and to carefully explore how children come to understand these concepts. The primary goal is to identify levels of sophistication in children's thinking as it develops through instruction. Understanding how children's thinking develops will provide a critical foundation for designing curricula, developing content standards, and informing educational policies.
Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.
SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.
This study examines non-cognitive factors, mindsets, cognitive factors, and strategies for learning mathematics, in the context of a MOOC combined with classroom instruction for middle grades students in mathematics. No previous mindset study has researched the impact of mindset messages within mathematics, and the proposed study will add important knowledge to this field.
This project is documenting how students with learning disabilities (LD) access and advance their conceptual understanding of fractions. Rather than focusing on the knowledge students do not have, this work is focused on uncovering students' informal knowledge that can bridge to fractions and how instruction can be used to promote conceptual change.
The objective of this project is to develop a toolkit of resources and practices that will help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.
The overarching goal of this RAPID project is to contribute to the national goal of improving students' mathematical proficiency by providing information and guidance to mathematics education practitioners and scholars to support a sharpened focus on formative assessment. The project produces, analyzes, and makes available to the field timely information regarding the views and practices of mathematics teacher educators and professional development specialists regarding formative assessment early in the enactment of ambitious standards in mathematics.
Most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers.
PATHWAYS has two primary objectives: (1) To develop mathematics teachers who approach classrooms with a researcher's mindset, making instructional decisions based on empirical data; (2) To engage aspiring mathematics teachers in systematic formal mathematics education research, thereby providing foundations for participation in mathematics education graduate programs.
This project will study whether elementary mathematics specialists who participated in an intensive educational program supported by DRK-12 have continued providing leadership when they returned to teaching full-time. In what ways are specialist-teachers continuing to use their leadership expertise in their school, district, and state? How do district administrators, building administrators, and teachers shape specialist-teachers' opportunities for leadership? What other factors shape these opportunities? What is the impact of specialist-teachers on their schools' leadership culture?
This project provides professional development and support for teachers of mathematics in Grades 3-5 and assesses the impacts of the project through a rigorous cluster randomized control trial. The project supports teachers to provide instruction that helps all students reach ambitious academic goals in mathematics.
The overarching goal of this project is to develop innovative instructional resources and professional development to support middle grades teachers in meeting the challenges set by college- and career-ready standards for students' learning of algebra.
This project tests and refines a hypothetical learning trajectory and corresponding assessments, based on the collective work of 50 years of research in mathematics education and psychology, for improving students' ability to reason, prove, and argue mathematically in the context of algebra. The study produces an evidence-based learning trajectory and appropriate instruments for assessing it.
This project that creates a set of materials for middle grades students and teacher professional development that would support the learning of early algebra. Building on their prior work with an elementary version, the efficacy study focuses on the implementation of the principals underlying the materials, fidelity of use of the materials, and impact on students' learning.
The PI of this project argues cogently that assessment of pre-service teacher preparedness to teach is based on a flawed model. The goal then is to use a simulation model from other professional arenas: the training of doctors, nurses, etc., to offer new insights and control for the many variables that come to play when conducting evaluations in practice.
This RAPID project is a cross-national comparative study of U.S. and Chinese instructional support systems, building from earlier data about mathematics teaching and learning in large urban school districts of both the United States and the People's Republic of China. The study uses quantitative methods to compare and contrast the effectiveness of supports (e.g., professional development, teacher networks, school leadership) in improving teachers' instructional practices and student achievement using comparable instrumentation.
This exploratory project is studying the use of mathematics and science specialist teachers in elementary schools. The first four studies are in six school districts in Washington State. They are characterizing and categorizing the specialists, investigating the content knowledge, preparation and needs of these teachers, determining their instructional effectiveness, and determining their impact on student learning and attitudes towards mathematics and science.
The objective of this study is to examine the impact of ITEAMS intervention strategies on student persistence in high school STEM course-taking and career expectations, and the value that students place on STEM careers.