This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.
Projects
This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.
This project builds on a successful introductory computer science curriculum, called Scratch Encore, to explore ways to support teachers in bringing together—or harmonizing—existing Scratch Encore instructional materials with themes that reflect the interests, cultures, and experiences of their students, schools, and communities. In designing these harmonized lessons, teachers create customized activities that resonate with their students while retaining the structure and content of the original Scratch Encore lesson.
This project builds on a successful introductory computer science curriculum, called Scratch Encore, to explore ways to support teachers in bringing together—or harmonizing—existing Scratch Encore instructional materials with themes that reflect the interests, cultures, and experiences of their students, schools, and communities. In designing these harmonized lessons, teachers create customized activities that resonate with their students while retaining the structure and content of the original Scratch Encore lesson.
This project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers. The project will field test and conduct research on the artifacts, facilitation strategies, and modes of interaction that effectively prepare K-2 teachers to learn about their students’ emergent use of computational thinking strategies.
This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.
Using high school statewide longitudinal data from Maryland from 2012-2022, this study will first document who has taught STEM-CTE courses over this period. After exploring the teaching landscape, the study will then explore whether qualifications (i.e., education, credentials, teaching experience) of teachers in STEM-CTE high school courses were associated with their students’ success.
This project addresses a critical need to help middle school teachers learn to incorporate data science in their teaching. It uses an open-source platform called the Common Online Data Analysis Platform (CODAP) as a tool for teachers to learn about data science and develop resources for students’ learning. The project team will develop a framework for teachers’ knowledge of data science teaching and learning. Insights from the project will help develop effective practices for teaching data science and understanding how students learn data science.
The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.
The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.
This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.
This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.
This project aims to develop, implement, and evaluate an Internet of Things (IoT) based educational curriculum and technology that provides grades 9-12 students with Computer Science (CS) and Software Engineering (SE) education.
This project uses a new theoretical framework that specifies criteria for developing scientific thinking skills that include the value that people place on scientific aims, the cognitive engagement needed to evaluate scientific claims, and the scientific skills that will enable one to arrive at the best supported explanation of a scientific phenomenon. The project will work with high school biology teachers to investigate their own understanding of scientific thinking, how it can be improved through professional development, and how this improvement can translate into practice to support student learning.
This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.
This project will develop a set of educative resources, assessment tools and teacher professional development (PD) activities to support teachers in developing knowledge of CS standards and improving their instructional pedagogy. Teachers will learn to use formative assessments related to these standards to determine student understanding. Improved CS instruction that is responsive to the needs and challenges of the student population is particularly critical in school districts with a large population of students who are typically underserved and under-represented in computer science. The project, a partnership between SRI International and the Milwaukee Public School District, will provide professional development experiences tied to standards instead of a specific curriculum in order to support diverse teachers teaching a variety of computer science curricula using different programming languages. Teachers will receive training via a combination of virtual webinars and face-to-face instruction. Teachers will have opportunities to evaluate their own teaching and measure their students' progress towards the standards.
As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.
This project will develop a professional development model that allows rural secondary teachers to learn and develop computational thinking related teaching skills with long-term support and scaffolds in place to both build their knowledge and the long-term capacity of their school districts.
This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.
This project will develop a research-practice partnership to plan and pilot a linguistically and culturally relevant computer science curriculum in middle school with the goal of broadening the participation of emergent bilingual (or English learner) students and Latino/a students in computer science education.
The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.
This project will study a model of pre-service teacher preparation that is designed to to increase teachers' and students' skills and confidence with computational thinking and develop teachers as designers of inclusive learning environments to promote computational thinking. The project will engage elementary (grades K-5) pre-service teachers (who are concurrently involved in school-based teacher preparation programs) as facilitators in an existing family technology program called Family Creative Learning (FCL).
The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.
The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.
This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The project will integrate engineering design, technology and society, electrical knowledge, and computer science to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.