This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. The project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses.
Developing Formative Assessment Tools and Routines for Additive Reasoning
This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. OGAP brings together two powerful ideas in mathematics education - formative assessment and research based learning trajectories - to enhance teacher knowledge, instructional practices, and student learning. Building on a proven track record of success with this model, the current project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses. The project involves a development component focused on producing and field testing new resources (including frameworks, item banks, pre-assessments and professional development materials) and a research component designed to improve the implementation of these resources in school settings. The materials that are developed from this project will help teachers be able to more precisely assess student understanding in the major mathematical work of grades K-2 in order to better meet the needs of diverse learners. With the addition of these new early elementary materials, OGAP formative assessment resources will be available for use from kindergarten through grade 8.
Although much attention has been paid to the improvement of early literacy, building strong mathematical foundations and early computational fluency is equally critical for later success in school and preparation for STEM careers. This project will develop and field test tools, resources, and routines that teachers can employ to help young students develop deeper conceptual understandings and more powerful and efficient strategies in the early grades. The project emerged from the needs of school-based practitioners looking for instructional support in the primary grades and uses design-based research methodology. The new materials will be developed, tested, and revised through multiple iterations of implementation in schools. Research-based learning trajectories will be consolidated into simplified frameworks that illustrate the overall progression of major levels of student thinking in the domains of counting, addition, and subtraction. A bank of formative assessment items will be developed, field tested, and refined through a three-phase validation process. Professional development modules will be designed and field tested to support teacher knowledge and effective use of the formative assessment tools and routines. Data collected on key activities in the formative assessment process (including teacher selection of items, analysis of student work, instructional implications, and enacted instructional response) will be used to continually inform development as well as illuminate the conditions under which formative assessment leads to productive changes in instruction and student learning in the classroom. The project will yield a set of field tested tools and resources ready for both broader dissemination and further research on the promise of the intervention, as well as an understanding of how to support effective implementation.
Project Videos
2018 STEM for All Video Showcase
Title: Formative Assessment Tools to Improve Early Math Learning
Presenter(s): Caroline Ebby, Nicole Fletcher, & Beth Hulbert |