Physics

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

CAREER: Scaffolding Engineering Design to Develop Integrated STEM Understanding with WISEngineering

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.

Lead Organization(s): 
Award Number: 
1253523
Funding Period: 
Mon, 07/01/2013 to Sun, 06/30/2019
Full Description: 

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this DRK-12 CAREER project from the University of Virginia. Research on the learning sciences with a focus on a knowledge integration perspective of helping students build and retain connections among normative and relevant ideas and existing knowledge structures the development of the WiseEngineering learning environment, an online learning management system that scaffolds engineering design projects. WiseEngineering provides support for students and teachers to conduct engineering design projects in middle and high school settings. Dynamic virtualizations that enable learners to observe and experiment with phenomena are combined with knowledge integration patterns to structure a technology rich learning environments for students. The research focuses on the ways in which metacognition, namely self-knowledge and self-regulation interact with learning in these technology-enhanced environments.Embedded assessments and student pre and post-testing of key science and mathematics constructs provide evidence of the development of student understanding.A rubric that examines knowledge integration is used to examine the extent wo which students understand how multiple concepts interact in a given context. A mixed-methods research design will examines how students and teachers in middle school mathematics and science courses develop understanding of the underlying principles in STEM. The PI of this award has integrated research and education in this proposal by connecting her research on engineering design and technology-enabled learning environments with the preservice secondary education methods course that she teachs. In addition, she has folded the research into the instructional technology graduate courses of which she is the instructor.

Engineering design is a key area of the Next Generation Science Standards that requires additional curricular materials development and research on how students integrate concepts across mathematics and science to engage in these engineering practices. The technology-rich learning environment, WISEngineering, provides the context to examine how student engineering design principles evolve over time. The opportunitiy for students to provide critiques of each others' work provides the context in which to examine crucial metacognitive principles. Classroom observations and teacher interviews provides the opportunity to examine how the technology-rich engineering design learning environment integrates STEM knowledge for teachers as well as students.

Laboratory for the Study of Extra Solar Planets: Fostering Data Literacy

This project provides a virtual environment in which high school physics students can engage in the cutting edge science of studying exoplanets. Using online telescopes and learning software, students gain a deeper understanding of science inquiry, including reasoning from models, gathering assessing, and interpreting authentic data, and drawing conclusions from multiple line of evidence. The research advances our understanding of ways to increase students' knowledge of data literacy.

Award Number: 
1222588
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

The Laboratory for the Study of Extra Solar Planets: Fostering Data Literacy provides a virtual environment in which high school students in physics classes engage in the cutting edge science of studying exoplanets. The project builds on previous work and serves as an example and test bed for integrating science practice, crosscutting concepts and science content as called for in the Framework for the Next Generation Science Standards. The project produces seven mini-labs that scaffold students in the detection of orbits of exoplanets around their stars. These include learning to use models, learning to use the telescope, working with data, applying concepts to interpret data and creating a 3-D interactive model based on their data. In three more laboratories on infrared and spectroscopy, students learn to apply core concepts and modeling to identify some of the properties of the exoplanets. Using online telescopes and learning software, students gain a deeper understanding of science inquiry, including reasoning from models, gathering assessing, and interpreting authentic data, and drawing conclusions from multiple line of evidence. Teacher support includes in-class support on start-up, online professional development, and interaction with the scientific community. The previous work has been shown to have strong potential for engaging girls and also students in underserved communities in urban areas.

The overarching research question is how students learn to make sense of data. What are the tools that can help them move efficiently from their initial ideas to more sophisticated understandings? The research focuses on three areas that are fundamental to data literacy: reasoning from models, assessing the quality of the data and interpreting data and understanding uncertainty. Qualitative data are gathered in the first year and scored using a rubric developed by experts. In year two, more quantitative measures are employed. Assessment instruments, using items from validated assessments, are created and psychometrically validated.

The outcomes of this project are a unique online Laboratory that is universally accessible to all classrooms and that engages students in meaningful scientific data collection, analysis, visualization, modeling and interpretation at one of the most exciting research frontiers in current science. The activities and assessments transform astronomy into an inquiry-based subject that significantly increases students' understanding of science practice and content as well as their science attitudes, interest, and identity. The research advances our understanding of ways to increase students' knowledge of data literacy, which is widely useful in science education across all disciplines.

Previous project title: Laboratory for the Study of Alien Worlds: A National Resource for Students and Teachers

Researching the Efficacy of the Science and Literacy Academy Model (Collaborative Research: Strang)

This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.

Award Number: 
1223021
Funding Period: 
Wed, 08/01/2012 to Sun, 07/31/2016
Full Description: 

This award is doing a research study of three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. Model 1 is a one-week institute based on classroom discourse practices and a 2-week practicum (cohort 1). Model 2 is the one-week institute (cohort 2). Model 3 is a "business as usual" model (cohort 3) based on normal professional development provided by the school district. Cohorts 1 and 2 experience the interventions in year 1 with four follow-up sessions in each of years 2 and 3. In year 4 they receive no PD, but are being observed to see if they sustain the practices learned. Cohort 3 receives no treatment in years 1 and 2, but participates in a revised version of the institute plus practicum in year 3 with four follow up sessions in year 4. The Lawrence Hall of Science provides the professional development, and Stanford University personnel are conducting the research. The teachers come from the Oakland Unified School District. Science content is the GEMS Ocean Sciences Sequence.

There are 3 research questions;

1. In what ways do practicum-based professional development models influence science instructional practice?

2. What differences in student outcomes are associated with teachers' participation in the different PD programs?

3. Is the impact of the revised PD model different from the impact of the original model?

This is a designed-based research model. Teacher data is based on interviews on beliefs about teaching and the analysis of video tapes of their practicum and classroom performance using the Discourse in Inquiry Science Classrooms instrument. Student data is based on the GEMS unit pre- and post-tests and the California Science Test for 5th graders. Multiple analyses are being conducted using different combinations of the data from 8 scales across 4 years.

There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos. These will be presented in publications and conference presentations and be posted on linked websites at the Lawrence Hall of Science and the Center to Support Excellence in Teaching at Stanford University.

Identifying Science Teaching Strategies for Promoting Reasoned Discussions of Concepts and Simulations

This project supports teachers in improving classroom discourse and reasoning by identifying key teaching strategies for building scientific concepts in successful discussions. It links these strategies together with the use of visual displays in classroom instruction with a particular emphasis on simulations. The teacher video-based workbooks that result from this study provide such a resource that is open-source and available to a larger population of teachers than just those in the project.

Award Number: 
1222709
Funding Period: 
Sat, 09/15/2012 to Sun, 08/31/2014
Full Description: 

A key goal of the New Generation Science Standards is ensuring that students develop the capacity to not just participate in the discussions of science phenomenon, but also be able to reason cogently and deeply about those ideas in the disciplines. This project supports teachers in improving classroom discourse and reasoning by identifying key teaching strategies for building scientific concepts in successful discussions. It links these strategies together with the use of visual displays in classroom instruction with a particular emphasis on simulations. The focus of the classroom discourse strategy development is on teachers demonstrating learning of explanatory models of physical phenomena in three subject areas: high school electricity, high school mechanics, and middle school states of matter, with an emphasis on the use of visual displays. Based on previous research that showed preliminary promising evidence for the teachers orchestration of productive classroom discourse and using video data collected during the prior research settings, the project uses video case studies to characterize key elements of effective pedagogical processes and develop materials for use in pre- and in-service teacher training.

This study uses existing videos of exemplary physics teachers who are using the CASTLE curriculum to teach units on electricity and magnetism. Research questions address the identification of whole class strategies that are used with simulations to support the development of a visualizable particulate model across a number of time scales in the classroom. Another question addresses how teachers differ in their use of static as opposed to dynamic display models to identify the advantages and disadvantages of both types of displays. The researchers work within the socio-cognitive framework of the ways that students and teachers construct explanatory models and the socio-linguistic framework by which discussion strategies can encourage productive engagement in the development of disciplinary knowledge. The researchers have developed a framework that codifies the elements of the developing student to identify particularly productive segments of lessons that illustrate how such discourse can be scaffolded in the classroom. These segments will be organized into a video-based teaching manual disseminated through a project website and used in the pre-service teacher preparation at the university.

This project represents the ways in which research in science education on student and teacher reasoning around scientific phenomena can be translated from research into practice. The cognitive research that describes the nature and elements of students' conceptual models requires concrete resources to make them applicable within the typical classroom. The teacher video-based workbooks that result from this study provide such a resource that is open-source and available to a larger population of teachers than just those in the project. The connection of the videos to the CASTLE curricular materials provides additional research evidence to support the adoption of this curriculum that will be especially cogent as the New Generation Science Standards require deeper understanding of disciplinary content.

Assessing, Validating, and Developing Content Knowledge for Teaching Energy (Collaborative Research: Gitomer)

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. The project uses a framework that includes tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222777
Funding Period: 
Sat, 09/01/2012 to Thu, 08/31/2017
Full Description: 

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. There is significant research that indicates that teacher content knowledge differs from what people in other professions need to know about particular domains such as mathematics, and the development of a Content Knowledge of Teaching Energy in mechanics is an extension of those research and development efforts. The project embeds the development of the instrument in a program of measuring effective teaching of physics in the classroom and develops a strong validity argument for the resulting assessment based on its use as a measure in a professional development project that intends to improve teachers' understanding of energy in physics. The research team consists of experts in physics, assessment and classroom teaching of physics. The collaborative project includes researchers at Rutgers, University of Maine, Seattle Pacific University, Facets Innovation, and the Educational Testing Service.

The project uses a framework for effective teaching developed in the Measures of Effective Teaching project funded by the Gates Foundation to construct a theoretical framework for the teaching of mechanical energy. That framework includes items and tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning. A strong framework of validation based on multiple lines of evidence of the relationship between the items developed for the study and observations, analysis of video, and artifacts from the classroom is one element of the study. Another element of the study examines multiple psychometric lines of evidence to determine the reliability of the instruments and the validity of the inferences drawn from them. The resulting instruments will be used in the measurement of changes of teacher content knowledge for teaching in professional development programs as another source of validation.

The improvement of teachers' content knowledge for teaching is an important intermediary goal of professional development of teachers. Without adequate understanding of the gaps in teacher knowledge and precise evidence of the improvement through professional development, the efficacy of different professional development projects is not possible. This project develops a model of teacher assessment instrument development that addresses a cross-cutting theme in the Next Generation Science Standards and contributes an important tool to the research and evaluation processes that are needed to make those standards a reality in the classroom. Findings from the use of the instruments across multiple projects inform policy decisions on local, state and federal levels.

Assessing, Validating, and Developing Content Knowledge for Teaching Energy (Collaborative Research: Vokos)

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. The project uses a framework that includes tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222732
Funding Period: 
Sat, 09/01/2012 to Wed, 08/31/2016
Full Description: 

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. There is significant research that indicates that teacher content knowledge differs from what people in other professions need to know about particular domains such as mathematics, and the development of a Content Knowledge of Teaching Energy in mechanics is an extension of those research and development efforts. The project embeds the development of the instrument in a program of measuring effective teaching of physics in the classroom and develops a strong validity argument for the resulting assessment based on its use as a measure in a professional development project that intends to improve teachers' understanding of energy in physics. The research team consists of experts in physics, assessment and classroom teaching of physics. The collaborative project includes researchers at Rutgers, University of Maine, Seattle Pacific University, Facets Innovation, and the Educational Testing Service.

The project uses a framework for effective teaching developed in the Measures of Effective Teaching project funded by the Gates Foundation to construct a theoretical framework for the teaching of mechanical energy. That framework includes items and tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning. A strong framework of validation based on multiple lines of evidence of the relationship between the items developed for the study and observations, analysis of video, and artifacts from the classroom is one element of the study. Another element of the study examines multiple psychometric lines of evidence to determine the reliability of the instruments and the validity of the inferences drawn from them. The resulting instruments will be used in the measurement of changes of teacher content knowledge for teaching in professional development programs as another source of validation.

The improvement of teachers' content knowledge for teaching is an important intermediary goal of professional development of teachers. Without adequate understanding of the gaps in teacher knowledge and precise evidence of the improvement through professional development, the efficacy of different professional development projects is not possible. This project develops a model of teacher assessment instrument development that addresses a cross-cutting theme in the Next Generation Science Standards and contributes an important tool to the research and evaluation processes that are needed to make those standards a reality in the classroom. Findings from the use of the instruments across multiple projects inform policy decisions on local, state and federal levels.

Assessing, Validating, and Developing Content Knowledge for Teaching Energy (Collaborative Research: Minstrell)

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. The project uses a framework that includes tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning.

Lead Organization(s): 
Award Number: 
1222598
Funding Period: 
Sat, 09/01/2012 to Thu, 08/31/2017
Full Description: 

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. There is significant research that indicates that teacher content knowledge differs from what people in other professions need to know about particular domains such as mathematics, and the development of a Content Knowledge of Teaching Energy in mechanics is an extension of those research and development efforts. The project embeds the development of the instrument in a program of measuring effective teaching of physics in the classroom and develops a strong validity argument for the resulting assessment based on its use as a measure in a professional development project that intends to improve teachers' understanding of energy in physics. The research team consists of experts in physics, assessment and classroom teaching of physics. The collaborative project includes researchers at Rutgers, University of Maine, Seattle Pacific University, Facets Innovation, and the Educational Testing Service.

The project uses a framework for effective teaching developed in the Measures of Effective Teaching project funded by the Gates Foundation to construct a theoretical framework for the teaching of mechanical energy. That framework includes items and tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning. A strong framework of validation based on multiple lines of evidence of the relationship between the items developed for the study and observations, analysis of video, and artifacts from the classroom is one element of the study. Another element of the study examines multiple psychometric lines of evidence to determine the reliability of the instruments and the validity of the inferences drawn from them. The resulting instruments will be used in the measurement of changes of teacher content knowledge for teaching in professional development programs as another source of validation.

The improvement of teachers' content knowledge for teaching is an important intermediary goal of professional development of teachers. Without adequate understanding of the gaps in teacher knowledge and precise evidence of the improvement through professional development, the efficacy of different professional development projects is not possible. This project develops a model of teacher assessment instrument development that addresses a cross-cutting theme in the Next Generation Science Standards and contributes an important tool to the research and evaluation processes that are needed to make those standards a reality in the classroom. Findings from the use of the instruments across multiple projects inform policy decisions on local, state and federal levels.

Assessing, Validating, and Developing Content Knowledge for Teaching Energy (Collaborative Research: Wittmann)

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. The project uses a framework that includes tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222580
Funding Period: 
Sat, 09/01/2012 to Wed, 08/31/2016
Full Description: 

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. There is significant research that indicates that teacher content knowledge differs from what people in other professions need to know about particular domains such as mathematics, and the development of a Content Knowledge of Teaching Energy in mechanics is an extension of those research and development efforts. The project embeds the development of the instrument in a program of measuring effective teaching of physics in the classroom and develops a strong validity argument for the resulting assessment based on its use as a measure in a professional development project that intends to improve teachers' understanding of energy in physics. The research team consists of experts in physics, assessment and classroom teaching of physics. The collaborative project includes researchers at Rutgers, University of Maine, Seattle Pacific University, Facets Innovation, and the Educational Testing Service.

The project uses a framework for effective teaching developed in the Measures of Effective Teaching project funded by the Gates Foundation to construct a theoretical framework for the teaching of mechanical energy. That framework includes items and tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning. A strong framework of validation based on multiple lines of evidence of the relationship between the items developed for the study and observations, analysis of video, and artifacts from the classroom is one element of the study. Another element of the study examines multiple psychometric lines of evidence to determine the reliability of the instruments and the validity of the inferences drawn from them. The resulting instruments will be used in the measurement of changes of teacher content knowledge for teaching in professional development programs as another source of validation.

The improvement of teachers' content knowledge for teaching is an important intermediary goal of professional development of teachers. Without adequate understanding of the gaps in teacher knowledge and precise evidence of the improvement through professional development, the efficacy of different professional development projects is not possible. This project develops a model of teacher assessment instrument development that addresses a cross-cutting theme in the Next Generation Science Standards and contributes an important tool to the research and evaluation processes that are needed to make those standards a reality in the classroom. Findings from the use of the instruments across multiple projects inform policy decisions on local, state and federal levels.

Supporting Large Scale Change in Science Education: Understanding Professional Development and Adoption Variation Related to the Revised Advanced Placement Curriculum (PD-RAP)

This proposal leverages the re-design of the Advanced Placement (AP) curricula currently under way to study the impact of teacher professional development on student achievement in a natural experiment at scale. In addition to supporting the improvement of professional development of AP teachers by the College Board, the findings contribute to a better understanding of the relationship between professional development and student achievement more generally.

Award Number: 
1221861
Funding Period: 
Sat, 09/15/2012 to Wed, 08/31/2016
Full Description: 

This proposal leverages the re-design of the Advanced Placement (AP) curricula currently under way to study the impact of teacher professional development on student achievement in a natural experiment at scale. Researchers from the University of Massachusetts Boston, Harvard University, the University of Michigan, and the Education Development Center, Inc are conducting a quasi-experimental research study to examine the professional development experienced by AP Biology, Chemistry and Physics teachers to determines 1) the relationship between teacher and school characteristics and the professional development patterns that teachers choose; 2) the relationship between the professional development patterns that various types of teachers choose and their students' outcomes; and 3) the challenges encountered in delivering various forms of professional development at this level of scale. In addition to supporting the improvement of professional development of AP teachers by the College Board, the findings contribute to a better understanding of the relationship between professional development and student achievement more generally.

This study uses the existing context of the AP Course Audit by which all teachers of AP courses submit a syllabus, descriptions of laboratory investigations, and information regarding contact hours and the background of teachers, including the professional development programs accessed. The teachers who submit audits will be surveyed using the Stages of Concern Questionnaire together with other items to determine their perceptions of the AP Science redesign. The experiences of over 20,000 teachers are examined over the course of the study. Teachers who participate in AP professional development conducted by the College Board and the Active AP online Teacher Community (APoTC) will be surveyed about their professional development experiences. Case studies of 40 using interview, elaborated survey items, and artifacts from their teaching provide information about the quality of the teacher implementation of the AP course. Scores on the AP exams of all of the students will be linked to the teachers and the relationships among those scores and teacher professional development experiences analyzed using multi-level regression analyses.

The findings from this study have considerable importance for those individuals who provide professional development for science teachers. The results will inform the College Board and others who provide professional development directly to AP science teachers about how that support needs to change in order to more effectively support teachers. Improving the support that AP teachers receive has the potential to improve the learning experiences of the students who participate in those classes. In addition, this study will provide information about issues and challenges to providing professional development at scale to a wider audience of professional development providers. As the Next Generation Science Standards come online, this information will be useful to policy makers and practitioners.

Pages

Subscribe to Physics